[1] |
Summar ML, Mew NA. Inborn errors of metabolism with hyperammonemia: urea cycle defects and related disorders[J]. Pediatr Clin North Am, 2018, 65(2): 231-246.
doi: 10.1016/j.pcl.2017.11.004
|
[2] |
Nettesheim S, Kölker S, Karall D, et al. Incidence, disease onset and short-term outcome in urea cycle disorders-cross-border surveillance in Germany, Austria and Switzerland[J]. Orphanet J Rare Dis, 2017, 12(1): 111.
doi: 10.1186/s13023-017-0661-x
pmid: 28619060
|
[3] |
Häberle J, Burlina A, Chakrapani A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision[J]. J Inherit Metab Dis, 2019, 42(6): 1192-1230.
doi: 10.1002/jimd.12100
pmid: 30982989
|
[4] |
Raina R, Bedoyan JK, Lichter-Konecki U, et al. Consensus guidelines for management of hyperammonaemia in paediatric patients receiving continuous kidney replacement therapy[J]. Nat Rev Nephrol, 2020, 16(8): 471-482.
doi: 10.1038/s41581-020-0267-8
pmid: 32269302
|
[5] |
Matsumoto S, Häberle J, Kido J, et al. Urea cycle disorders-update[J]. J Hum Genet, 2019, 64(9): 833-847.
doi: 10.1038/s10038-019-0614-4
pmid: 31110235
|
[6] |
Alfadhel M, Mutairi FA, Makhseed N, et al. Guidelines for acute management of hyperammonemia in the Middle East region[J]. Ther Clin Risk Manag, 2016, 12: 479-487.
|
[7] |
Merritt JL 2nd, Brody LL, Pino G, et al. Newborn screening for proximal urea cycle disorders: current evidence supporting recommendations for newborn screening[J]. Mol Genet Metab, 2018, 124(2): 109-113.
doi: S1096-7192(18)30083-0
pmid: 29703588
|
[8] |
Savy N, Brossier D, Brunel-Guitton C, et al. Acute pediatric hyperammonemia: current diagnosis and management strategies[J]. Hepat Med, 2018, 10: 105-115.
|
[9] |
Kölker S, Garcia-Cazorla A, Valayannopoulos V, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation[J]. J Inherit Metab Dis, 2015, 38(6): 1041-1057.
doi: 10.1007/s10545-015-9839-3
pmid: 25875215
|
[10] |
Hershman M, Carmody R, Udayasankar UK. Case 252: acute hyperammonemic encephalopathy resulting from late-onset ornithine transcarbamylase deficiency[J]. Radiology, 2018, 287(1): 353-359.
doi: 10.1148/radiol.2018161834
pmid: 29558304
|
[11] |
Caldovic L, Abdikarim I, Narain S, et al. Genotype-phenotype correlations in ornithine transcarbamylase deficiency: a mutation update[J]. J Genet Genomics, 2015, 42(5): 181-194.
doi: 10.1016/j.jgg.2015.04.003
pmid: 26059767
|
[12] |
中国妇幼保健协会儿童疾病和保健分会遗传代谢学组. 鸟氨酸氨甲酰转移酶缺乏症诊治专家共识[J]. 浙江大学学报(医学版), 2020, 49(5): 539-547.
|
[13] |
Matsuura T, Hoshide R, Setoyama C, et al. Four novel gene mutations in five Japanese male patients with neonatal or late onset OTC deficiency: application of PCR-single-strand conformation polymorphisms for all exons and adjacent introns[J]. Hum Genet, 1993, 92(1): 49-56.
doi: 10.1007/BF00216144
pmid: 8365726
|
[14] |
Zhou Q, Huang H, Ma L, et al. The application of next-generation sequencing (NGS) in neonatal-onset urea cycle disorders (UCDs): clinical course, metabolomic profiling, and genetic findings in nine Chinese hyperammonemia patients[J]. Biomed Res Int, 2020: 5690915.
|
[15] |
Ziogas IA, Wu WK, Matsuoka LK, et al. Liver trans-plantation in children with urea cycle disorders: the importance of minimizing waiting time[J]. Liver Transpl, 2021, 27(12): 1799-1810.
doi: 10.1002/lt.26186
|
[16] |
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain[J]. J Inherit Metab Dis, 2013, 36(4): 595-612.
doi: 10.1007/s10545-012-9546-2
pmid: 23109059
|
[17] |
Kido J, Nakamura K, Mitsubuchi H, et al. Long-term outcome and intervention of urea cycle disorders in Japan[J]. J Inherit Metab Dis, 2012, 35(5): 777-785.
doi: 10.1007/s10545-011-9427-0
pmid: 22167275
|
[18] |
Saritaş Nakip Ö, Yıldız Y, Tokatlı A. Retrospective evaluation of 85 patients with urea cycle disorders: one center experience, three new mutations[J]. J Pediatr Endocrinol Metab, 2020, 33(6): 721-728.
doi: 10.1515/jpem-2019-0413
pmid: 32447331
|
[19] |
Posset R, Gropman AL, Nagamani SCS, et al. Impact of diagnosis and therapy on cognitive function in urea cycle disorders[J]. Ann Neurol, 2019, 86(1): 116-128.
doi: 10.1002/ana.25492
pmid: 31018246
|
[20] |
Kido J, Matsumoto S, Mitsubuchi H, et al. Early liver transplantation in neonatal-onset and moderate urea cycle disorders may lead to normal neurodevelopment[J]. Metab Brain Dis, 2018, 33(5): 1517-1523.
doi: 10.1007/s11011-018-0259-6
pmid: 29948653
|
[21] |
Posset R, Garbade SF, Gleich F, et al. Long-term effects of medical management on growth and weight in individuals with urea cycle disorders[J]. Sci Rep, 2020, 10(1): 11948.
doi: 10.1038/s41598-020-67496-3
pmid: 32686765
|
[22] |
Burgard P, Kölker S, Haege G, et al. Neonatal mortality and outcome at the end of the first year of life in early onset urea cycle disorders--review and meta-analysis of observational studies published over more than 35 years[J]. J Inherit Metab Dis, 2016, 39(2): 219-229.
doi: 10.1007/s10545-015-9901-1
pmid: 26634836
|
[23] |
Pontoizeau C, Roda C, Arnoux JB, et al. Neonatal factors related to survival and intellectual and developmental outcome of patients with early-onset urea cycle disorders[J]. Mol Genet Metab, 2020, 130(2): 110-117.
doi: S1096-7192(20)30062-7
pmid: 32273051
|
[24] |
Posset R, Garbade SF, Boy N, et al. Transatlantic combined and comparative data analysis of 1095 patients with urea cycle disorders - a successful strategy for clinical research of rare diseases[J]. J Inherit Metab Dis, 2019, 42(1): 93-106.
doi: 10.1002/jimd.2019.42.issue-1
|
[25] |
Hediger N, Landolt MA, Diez-Fernandez C, et al. The impact of ammonia levels and dialysis on outcome in 202 patients with neonatal onset urea cycle disorders[J]. J Inherit Metab Dis, 2018, 41(4): 689-698.
doi: 10.1007/s10545-018-0157-4
pmid: 29520739
|
[26] |
Ames EG, Powell C, Engen RM, et al. Multisite retro-spective review of outcomes in renal replacement therapy for neonates with inborn errors of metabolism[J]. J Pediatr, 2022, 246: 116-122.
doi: 10.1016/j.jpeds.2022.03.043
|