临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (5): 394-400.doi: 10.12372/jcp.2023.22e0555
• 文献综述 • 上一篇
许枭, 赵琳 综述, 龚方戚 审校
收稿日期:
2022-04-26
出版日期:
2023-05-15
发布日期:
2023-05-10
Reviewer: XU Xiao, ZHAO Lin, Reviser: GONG Fangqi
Received:
2022-04-26
Published:
2023-05-15
Online:
2023-05-10
摘要:
血管平滑肌细胞(VSMCs)是血管壁重要的细胞组分,对于维持血管正常生理功能发挥重要作用。VSMCs具有高度的可塑性,异常的VSMCs表型转化促进多种心血管疾病的发生发展。近年来儿童心血管健康问题日益突出,给社会经济发展带来了沉重的负担。文章对VSMCs表型转化在川崎病、动脉瘤、原发性高血压、肺动脉高压、主动脉缩窄和多发性大动脉炎等儿童心血管疾病中的研究进行总结,为儿童心血管疾病的防治提供潜在靶点。
许枭, 赵琳, 龚方戚. 血管平滑肌细胞表型转化在儿童心血管疾病中的作用[J]. 临床儿科杂志, 2023, 41(5): 394-400.
XU Xiao, ZHAO Lin, GONG Fangqi. Role of vascular smooth muscle cell phenotypic switching in cardiovascular diseases in children[J]. Journal of Clinical Pediatrics, 2023, 41(5): 394-400.
[1] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. |
[2] |
Zhu Y, Guo P, Zou Z, et al. Status of cardiovascular health in Chinese children and adolescents : a cross-sectional study in China[J]. JACC Asia, 2022, 2(1): 87-100.
doi: 10.1016/j.jacasi.2021.09.007 |
[3] |
Liu M, Gomez D. Smooth muscle cell phenotypic diversity[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1715-1723.
doi: 10.1161/ATVBAHA.119.312131 pmid: 31340668 |
[4] | Chakraborty R, Chatterjee P, Dave JM, et al. Targeting smooth muscle cell phenotypic switching in vascular disease[J]. JVS Vasc Sci, 2021, 2: 79-94. |
[5] |
Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture[J]. Physiol Rev, 1979, 59(1): 1-61.
doi: 10.1152/physrev.1979.59.1.1 pmid: 108688 |
[6] |
Allahverdian S, Chaabane C, Boukais K, et al. Smooth muscle cell fate and plasticity in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4): 540-550.
doi: 10.1093/cvr/cvy022 pmid: 29385543 |
[7] |
Worssam MD, Jorgensen HF. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases[J]. Biochem Soc Trans, 2021, 49(5): 2101-2111.
doi: 10.1042/BST20210138 |
[8] |
Pan H, Xue C, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation, 2020, 142(21): 2060-2075.
doi: 10.1161/CIRCULATIONAHA.120.048378 |
[9] |
Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-like factor 4)[J]. Arterioscler Thromb Vasc Biol, 2021, 41(11): 2693-2707.
doi: 10.1161/ATVBAHA.121.316600 |
[10] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. |
[11] | Subspecialty Group of Cardiology, the Society of Pediatrics, Chinese Medcial Association, et al. Recommendations for clinical management of Kawasaki disease with coronary artery lesions (2020 revision)[J]. Zhonghua Er Ke Za Zhi, 2020, 58(9): 718-724. |
[12] |
Orenstein JM, Shulman ST, Fox LM, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study[J]. PLoS One, 2012, 7(6): e38998.
doi: 10.1371/journal.pone.0038998 |
[13] |
Suganuma E, Sato S, Honda S, et al. A novel mouse model of coronary stenosis mimicking Kawasaki disease induced by Lactobacillus casei cell wall extract[J]. Exp Anim, 2020, 69(2): 233-241.
doi: 10.1538/expanim.19-0124 |
[14] | Porritt RA, Zemmour D, Abe M, et al. NLRP3 inflam-masome mediates immune-stromal interactions in vasculitis[J]. Circ Res, 2021, 129(9): e183-e200. |
[15] |
Noval Rivas M, Arditi M. Kawasaki disease: patho-physiology and insights from mouse models[J]. Nat Rev Rheumatol, 2020, 16(7): 391-405.
doi: 10.1038/s41584-020-0426-0 |
[16] |
Arora K, Guleria S, Jindal AK, et al. Platelets in Kawasaki disease: is this only a numbers game or something beyond?[J]. Genes Dis, 2020, 7(1): 62-66.
doi: 10.1016/j.gendis.2019.09.003 pmid: 32181276 |
[17] |
Zeng Z, Xia L, Fan X, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair[J]. J Clin Invest, 2019, 129(3): 1372-1386.
doi: 10.1172/JCI124508 pmid: 30645204 |
[18] |
Zhang Y, Wang Y, Zhang L, et al. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRbeta vascular smooth muscle cell axis[J]. Circ Res, 2020, 127(7): 855-873.
doi: 10.1161/CIRCRESAHA.120.316951 pmid: 32597702 |
[19] |
Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1351-1368.
doi: 10.1161/ATVBAHA.119.312787 pmid: 31144989 |
[20] |
Garrido E, Metayer T, Borha A, et al. Intracranial aneurysms in pediatric population: a two-center audit[J]. Childs Nerv Syst, 2021, 37(8): 2567-2575.
doi: 10.1007/s00381-021-05151-6 |
[21] |
Nakajima N, Nagahiro S, Sano T, et al. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls[J]. Acta Neuropathol, 2000, 100(5): 475-480.
pmid: 11045669 |
[22] |
Oka M, Shimo S, Ohno N, et al. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis[J]. Sci Rep, 2020, 10(1): 8330.
doi: 10.1038/s41598-020-65361-x pmid: 32433495 |
[23] |
Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes[J]. Nat Rev Cardiol, 2021, 18(5): 331-348.
doi: 10.1038/s41569-020-00472-6 pmid: 33353985 |
[24] |
Pedroza AJ, Tashima Y, Shad R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2195-2211.
doi: 10.1161/ATVBAHA.120.314670 pmid: 32698686 |
[25] |
Clark ER, Helliwell RJ, Bailey MA, et al. Preservation of smooth muscle cell integrity and function: a target for limiting abdominal aortic aneurysm expansion?[J]. Cells, 2022, 11(6): 1043.
doi: 10.3390/cells11061043 |
[26] |
Benenson I, Waldron FA, Porter S. Pediatric hypertension: a guideline update[J]. Nurse Pract, 2020, 45(5): 16-23.
doi: 10.1097/01.NPR.0000660332.31690.68 pmid: 32271260 |
[27] |
Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, et al. Early programming of adult systemic essential hypertension[J]. Int J Mol Sci, 2020, 21(4): 1203.
doi: 10.3390/ijms21041203 |
[28] |
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension[J]. Cardiovasc Res, 2018, 114(4): 529-539.
doi: 10.1093/cvr/cvy023 pmid: 29394331 |
[29] |
Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction[J]. Hypertens Res, 2021, 44(2): 129-146.
doi: 10.1038/s41440-020-00553-6 |
[30] | Li Y, Li H, Xing W, et al. Vascular smooth muscle cell-specific miRNA-214 knockout inhibits angiotensin II-induced hypertension through upregulation of Smad7[J]. FASEB J, 2021, 35(11): e21947. |
[31] |
Jin L, Lin X, Yang L, et al. AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension[J]. Hypertension, 2018, 71(2): 262-272.
doi: 10.1161/HYPERTENSIONAHA.117.09651 pmid: 29279317 |
[32] | Fang G, Qi J, Huang L, et al. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension[J]. Biosci Rep, 2019, 39(3): BSR20182229. |
[33] | 中华医学会呼吸病学分会肺栓塞与肺血管病学组. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(1): 11-51. |
[34] |
Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management[J]. Eur Respir J, 2019, 53(1): 1801916.
doi: 10.1183/13993003.01916-2018 |
[35] | Zhang W, Tao Z, Xu F, et al. An overview of miRNAs involved in PASMC phenotypic switching in pulmonary hypertension[J]. Biomed Res Int, 2021, 2021: 5765029. |
[36] |
Gong J, Chen Z, Chen Y, et al. Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension[J]. Respir Res, 2019, 20(1): 53.
doi: 10.1186/s12931-019-1018-x |
[37] |
Wang L, Rice M, Swist S, et al. BMP9 and BMP10 act directly on vascular smooth muscle cells for generation and maintenance of the contractile state[J]. Circulation, 2021, 143(14): 1394-1410.
doi: 10.1161/CIRCULATIONAHA.120.047375 pmid: 33334130 |
[38] |
Yeo Y, Yi ES, Kim JM, et al. FGF12 (fibroblast growth factor 12) inhibits vascular smooth muscle cell remodeling in pulmonary arterial hypertension[J]. Hypertension, 2020, 76(6): 1778-1786.
doi: 10.1161/HYPERTENSIONAHA.120.15068 pmid: 33100045 |
[39] |
Morris HE, Neves KB, Montezano AC, et al. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension[J]. Clin Sci (Lond), 2019, 133(24): 2481-2498.
doi: 10.1042/CS20190835 pmid: 31868216 |
[40] |
Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation[J]. Heart, 2017, 103(15): 1148-1155.
doi: 10.1136/heartjnl-2017-311173 pmid: 28377475 |
[41] | Tanaskovic I, Ilic S, Jurisic V, et al. Histochemical, immunohistochemical and ultrastructural analysis of aortic wall in neonatal coarctation[J]. Rom J Morphol Embrol, 2019, 60(4): 1291-1298. |
[42] |
Liu A, Li B, Yang M, et al. RNA sequencing analyses in infants patients with coarctation of the aorta[J]. Hereditas, 2021, 158(1): 32.
doi: 10.1186/s41065-021-00194-w pmid: 34425910 |
[43] |
Russo RAG, Katsicas MM. Takayasu arteritis[J]. Front Pediatr, 2018, 6: 265.
doi: 10.3389/fped.2018.00265 pmid: 30338248 |
[44] |
Millan P, Gavcovich TB, Abitbol C. Childhood-onset Takayasu arteritis[J]. Curr Opin Pediatr, 2022, 34(2): 223-228.
doi: 10.1097/MOP.0000000000001113 pmid: 35142753 |
[45] |
Watanabe R, Berry GJ, Liang DH, et al. Pathogenesis of giant cell arteritis and Takayasu arteritis-similarities and differences[J]. Curr Rheumatol Rep, 2020, 22(10): 68.
doi: 10.1007/s11926-020-00948-x pmid: 32845392 |
[46] |
Shekhonin BV, Tararak EM, Griaznov OG, et al. Phenotypes of smooth muscle cells in carotid arteries in Takayasu's disease[J]. Arkh Patol, 2003, 65(2): 31-35.
pmid: 15357245 |
[47] |
Bertipaglia B, Faggin E, Cillo U, et al. Is apoptosis of vascular smooth muscle cells involved in the development of Takayasu arteritis? Suggestions from a case report[J]. Rheumatology (Oxford), 2005, 44(4): 484-487.
doi: 10.1093/rheumatology/keh515 |
[1] | 罗明静, 余嘉明, 王晓东, 张小玲, 余阅, 张瑜, 文飞球, 刘四喜. 424例地中海贫血患儿异基因造血干细胞移植后继发侵袭性真菌病临床分析[J]. 临床儿科杂志, 2025, 43(1): 21-28. |
[2] | 刘冬霞, 金蓉, 林荣军. 儿童重症难治性肺炎支原体肺炎并发闭塞性支气管炎危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 29-34. |
[3] | 钟瑾虹, 王灿, 陈芳. 婴幼儿纤维支气管镜诊疗中镇静技术的研究进展[J]. 临床儿科杂志, 2025, 43(1): 50-55. |
[4] | 蒋卫芹, 王静, 程安娜, 陈婷婷, 黄玉娟. 儿童热性惊厥急性期惊厥复发的危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 8-13. |
[5] | 邱琇, 韦冬梅, 林珊珊, 夏慧敏, 周文浩. 广州出生队列研究的理念与实践[J]. 临床儿科杂志, 2024, 42(9): 747-752. |
[6] | 陈倩, 田英, 孙锟, 张军. 关注环境、立足疾病的大型出生队列研究平台[J]. 临床儿科杂志, 2024, 42(9): 753-757. |
[7] | 范建霞. 健康生命轨迹计划缘起与发展:社区-家庭-母婴多层面儿童超重与肥胖干预研究队列[J]. 临床儿科杂志, 2024, 42(9): 768-773. |
[8] | 姜涛, 李双杰, 唐莲, 欧阳文献. 慢性乙型肝炎患儿外周血MAIT细胞的免疫生物学特性[J]. 临床儿科杂志, 2024, 42(9): 787-790. |
[9] | 周洁, 刘克强, 王金玲, 王莹. MYH11延长突变导致巨膀胱-小结肠-肠蠕动不良综合征1例报告及文献复习[J]. 临床儿科杂志, 2024, 42(9): 798-804. |
[10] | 褚思嘉, 汤继宏. 儿童急性淋巴细胞白血病及其治疗所伴发的中枢神经系统损伤研究进展[J]. 临床儿科杂志, 2024, 42(9): 811-816. |
[11] | 丁亚平, 夏姗姗, 张晨美. 《2023年国际儿童肾脏营养工作组临床实践建议:儿童急性肾损伤的营养管理》解读[J]. 临床儿科杂志, 2024, 42(8): 667-672. |
[12] | 李怡蓉, 李惠萍, 高靖瑜, 肖玉华, 陈小敏, 卢艳玲, 赵娜娜, 冯晓勤. FLAG-IDA诱导化疗方案中不同剂量阿糖胞苷治疗儿童急性髓系白血病疗效比较[J]. 临床儿科杂志, 2024, 42(8): 673-677. |
[13] | 黄博, 董艳迎, 宋琳岚. 儿童传染性单核细胞增多症348例临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 678-683. |
[14] | 王丹, 邵静波, 李红, 张娜, 朱嘉莳, 付盼, 王真. 儿童血液系统恶性肿瘤并发肿瘤溶解综合征38例临床特点分析[J]. 临床儿科杂志, 2024, 42(8): 684-690. |
[15] | 马岩, 韦性娇, 白华, 张艳, 田新敏, Aqsa Ahmad, 梁丽俊. 西部地区某三甲医院儿童慢性肾脏病5期病因构成及临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 697-703. |
|