临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (7): 486-491.doi: 10.12372/jcp.2022.23e0317
郝胜, 黄敏
收稿日期:
2023-04-13
出版日期:
2023-07-15
发布日期:
2023-07-05
基金资助:
HAO Sheng, HUANG Min
Received:
2023-04-13
Published:
2023-07-15
Online:
2023-07-05
摘要:
川崎病是一种系统性血管炎,巨噬细胞活化综合征是儿童风湿性免疫疾病的危重并发症,其发病基础为细胞因子风暴,进展快、病死率高,川崎病相关巨噬细胞活化综合征早期识别困难,主要特点为持续发热、脾肿大、铁蛋白水平升高和血小板减少等。目前没有统一诊断标准,主要参照全身型幼年特发性关节炎合并巨噬细胞活化综合征和原发性噬血细胞性淋巴组织细胞增多症的诊断标准,同时应与川崎病休克综合征和儿童多系统炎症综合征相鉴别。治疗以糖皮质激素为主要药物,反应不佳者可以使用环孢素等传统免疫抑制剂,生物制剂及靶向药物治疗具有前景。
郝胜, 黄敏. 儿童川崎病相关巨噬细胞活化综合征的临床诊治[J]. 临床儿科杂志, 2023, 41(7): 486-491.
HAO Sheng, HUANG Min. Clinical diagnosis and treatment of Kawasaki disease-associated macrophage activation syndrome in children[J]. Journal of Clinical Pediatrics, 2023, 41(7): 486-491.
表1
KD-MAS可参照的临床诊断标准"
HLH-20041) | HLH-20091) | 2016SJIA-MAS共识标准2) | 2020KD-MAS共识标准2) |
---|---|---|---|
以下8条至少符合5条: (1)发热:体温>38.5℃,持续>7 d (2)脾大 (3)血细胞减少(两系或三系) Hb<90 g·L-1(4周以内婴儿Hb<100 g·L-1) PLT<100×109·L-1 中性粒细胞<1.0×10·L-1,且非骨髓造血功能减低所致 (4)高三酰甘油血症(空腹三酰甘油>3.0 mmol·L-1或265 mg·dL-1)和/或低纤维蛋白原血症( <1.5g·L-1) (5)骨髓、肝脏、脾脏、淋巴结发现噬血细胞 (6)NK细胞活性降低或完全缺乏 (7)血清铁蛋白>500 μg·L-1 (8)可溶性CD25(可溶性IL-2受体)≥2 400 U·mL-1 | (1)以下4条至少符合3条: ①发热 ②脾大 ③血细胞减少(外周血三系中至少两系以上减少) ④肝炎表现 (2)以下4条至少符合1条: ①骨髓、脾脏或淋巴结中发现噬血现象 ②铁蛋白升高 ③可溶性L-2受体(SCD25)水平升高(有年龄相关性) ④NK细胞活性减低或缺失 (3)其他支持HLH诊断的指标: ①高三酰甘油血症 ②低纤维蛋白原血症 ③低钠血症 | (1)铁蛋白>684 mg·mL-1 (2)血小板≤181×109·L-1 (3)天门冬氨酸氨基转移酶>48 U·L-1 (4)三酰甘油>1 560 mg·L-1 (1.76 mmol·L-1) (5)纤维蛋白原≤3 600 mg·L-1 诊断条件:(1)为必备条件,(2)~(5)满足任意2条或2条以上(需排除伴发免疫介导的血小板减少症,传染性肝炎、内脏利什曼病和家族性高脂血症等疾病) | (1)铁蛋白进行性升高 (2)血小板急剧下降 (3)天门冬氨酸氨基转移酶高于基线数倍 (4)三酰甘油急剧升高 (5)纤维蛋白原明显降低 (6)骨髓或其他组织(淋巴结、肝脏、脾脏等)发现噬血细胞 诊断条件:(1)为必备条件 (罕见病例除外),(2)~(6)满足任意2条或2条以上 |
表2
KD-MAS、KDSS、MIS-C、SJIA-MAS的鉴别要点[7,27???-31]"
项 目 | KD-MAS | KDSS | MIS-C | SJIA-MAS |
---|---|---|---|---|
诱因/原发病 | KD | KD | COVID-19 | SJIA |
发生率 | 2%以下 | 6% | <0.01% | 约10% |
脾肿大 | 常见 | 无 | 无 | 常见 |
铁蛋白 | 明显升高 | 正常 | 升高 | 明显升高 |
淋巴细胞 | 正常 | 正常 | 降低 | 正常 |
血小板 | 由高到低 | 正常或升高 | 正常或升高 | 正常或降低 |
肝酶 | 明显升高 | 正常或升高 | 正常或升高 | 明显升高 |
血沉 | 由高到低 | 升高 | 正常 | 由高到低 |
骨髓吞噬现象 | 常见 | 少见 | 少见 | 常见 |
累及系统 | 多系统(肝、血液、神经等) | 循环系统 | 多系统(肺、心肌、胃肠道等) | 多系统(肝、血液、神经等) |
[1] |
Gorelik M, Chung SA, Ardalan K, et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the Management of Kawasaki Disease[J]. Arthritis Care Res (Hoboken), 2022, 74(4): 538-548.
doi: 10.1002/acr.v74.4 |
[2] |
Saadoun D, Vautier M, Cacoub P. Medium- and large-vessel vasculitis[J]. Circulation, 2021, 143(3): 267-282.
doi: 10.1161/CIRCULATIONAHA.120.046657 pmid: 33464968 |
[3] |
Tirelli F, Marrani E, Giani T, et al. One year in review: Kawasaki disease[J]. Curr Opin Rheumatol, 2020, 32(1): 15‐20.
doi: 10.1097/BOR.0000000000000671 pmid: 31599798 |
[4] |
McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era[J]. Nat Rev Rheumatol, 2021, 17(3): 145-157.
doi: 10.1038/s41584-020-00571-1 pmid: 33547426 |
[5] |
Wang W, Gong F, Zhu W, et al. Macrophage activation syndrome in Kawasaki disease: more common than we thought?[J]. Semin Arthritis Rheum, 2015, 44(4): 405-410.
doi: 10.1016/j.semarthrit.2014.07.007 |
[6] |
Crayne C, Cron RQ. Pediatric macrophage activation syndrome, recognizing the tip of the Iceberg[J]. Eur J Rheumatol, 2020, 7(Suppl 1): 13-20.
doi: 10.5152/eurjrheumatol. |
[7] | 郝胜. 儿童风湿性疾病相关巨噬细胞活化综合征诊断与治疗专家共识之五——川崎病篇[J]. 中国实用儿科杂志, 2020, 35(11): 23-27. |
[8] |
Pilania RK, Jindal AK, Johnson N, et al. Macrophage activation syndrome in children with Kawasaki disease: an experience from a tertiary care hospital in northwest India[J]. Rheumatology (Oxford), 2021, 60(7): 3413-3419.
doi: 10.1093/rheumatology/keaa715 pmid: 33221920 |
[9] |
Filipovich AH, Chandrakasan S. Pathogenesis of hemophagocytic lymphohistiocytosis[J]. Hematol Oncol Clin North Am, 2015, 29(5): 895-902.
doi: 10.1016/j.hoc.2015.06.007 |
[10] |
Crayne CB, Albeituni S, Nichols KE, et al. The immu-nology of macrophage activation syndrome[J]. Front Immunol, 2019, 10: 119.
doi: 10.3389/fimmu.2019.00119 |
[11] |
Zhang M, Behrens EM, Atkinson TP, et al. Genetic defects in cytolysis in macrophage activation syndrome[J]. Curr Rheumatol Rep, 2014, 16(9): 439.
doi: 10.1007/s11926-014-0439-2 pmid: 25086802 |
[12] |
Kaufman KM, Linghu B, Szustakowski JD, et al. Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis[J]. Arthritis Rheumatol, 2014, 66(12): 3486-3495.
doi: 10.1002/art.v66.12 |
[13] |
Brisse E, Wouters C, Matthys P. Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: differences and similarities[J]. Br J Haematol, 2016, 174(2): 203-217.
doi: 10.1111/bjh.2016.174.issue-2 |
[14] | Carter SJ, Tattersall R, Ramanan AV, et al. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment[J]. Rheu-matology (Oxford), 2019, 58(1): 5-17. |
[15] |
Jinkawa A, Shimizu M, Nishida K, et al. Cytokine profile of macrophage activation syndrome associated with Kawasaki disease[J]. Cytokine, 2019, 119: 52-56.
doi: S1043-4666(19)30073-0 pmid: 30877950 |
[16] |
Han SB, Lee SY. Macrophage activation syndrome in children with Kawasaki disease: diagnostic and therapeutic approaches[J]. World J Pediatr, 2020, 16(6): 566-574.
doi: 10.1007/s12519-020-00360-6 |
[17] | 周利兵, 吕海涛. 川崎病并发巨噬细胞活化综合征的研究进展[J]. 临床儿科杂志, 2018, 36(10): 74-78. |
[18] |
Jin P, Luo Y, Liu X, et al. Kawasaki disease complicated with macrophage activation syndrome: case reports and literature review[J]. Front Pediatr, 2019, 7: 423.
doi: 10.3389/fped.2019.00423 pmid: 31737585 |
[19] |
Kang H, Kwon YH, Yoo E, et al. Clinical characteristics of hemophagocytic lymphohistiocytosis following Kawasaki disease: differentiation from recurrent Kawasaki disease[J]. Blood Res, 2013, 48(4): 254-257.
doi: 10.5045/br.2013.48.4.254 |
[20] |
García-Pavón S, Yamazaki-Nakashimada MA, Báez M, et al. Kawasaki disease complicated with macrophage activation syndrome: a systematic review[J]. J Pediatr Hematol Oncol, 2017, 39(6): 445-451.
doi: 10.1097/MPH.0000000000000872 |
[21] | Zhang HY, Xiao M, Zhou D, et al. Platelet and ferritin as early predictive factors for the development of macrophage activation syndrome in children with Kawasaki disease: a retrospective case-control study[J]. Front Pediatr, 2023, 11: 1088525. |
[22] | 何胜男, 唐雪梅, 张宇, 等. 川崎病相关巨噬细胞活化综合征临床分析及诊断标准初探[J]. 中华实用儿科临床杂志, 2018, 33(9): 679-683. |
[23] | 何涛, 钟家蓉, 张静. 川崎病并发巨噬细胞活化综合征9例病例报告并文献复习[J]. 中国循证儿科杂志, 2018, 13(6): 421-426. |
[24] |
Nofech-Mozes Y, Garty BZ. Thrombocytopenia in Kawasaki disease: a risk factor for the development of coronary artery aneurysms[J]. Pediatr Hematol Oncol, 2003, 20(8): 597-601.
pmid: 14578029 |
[25] |
Bode SF, Lehmberg K, Maul-Pavicic A, et al. Recent advances in the diagnosis and treatment of hemophagocytic lymphohistiocytosis[J]. Arthritis Res Ther, 2012, 14(3): 213.
doi: 10.1186/ar3843 pmid: 22682420 |
[26] |
Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy[J]. Nat Rev Rheumatol, 2016, 12(5): 259‐268.
doi: 10.1038/nrrheum.2015.179 pmid: 27009539 |
[27] |
Sharma C, Ganigara M, Galeotti C, et al. Multisystem inflammatory syndrome in children and Kawasaki disease: a critical comparison[J]. Nat Rev Rheumatol, 2021, 17(12): 731-748.
doi: 10.1038/s41584-021-00709-9 pmid: 34716418 |
[28] |
Otar Yener G, Paç Kısaarslan A, Ulu K, et al. Differences and similarities of multisystem inflammatory syndrome in children, Kawasaki disease and macrophage activating syndrome due to systemic juvenile idiopathic arthritis: a comparative study[J]. Rheumatol Int, 2022, 42(5): 879-889.
doi: 10.1007/s00296-021-04980-7 |
[29] |
Bukulmez H. Current understanding of multisystem inflammatory syndrome (MIS-C) following COVID-19 and its distinction from Kawasaki disease[J]. Curr Rheumatol Rep, 2021, 23(8): 58.
doi: 10.1007/s11926-021-01028-4 pmid: 34216296 |
[30] |
Lopez-Leon S, Wegman-Ostrosky T, Ayuzo Del Valle NC, et al. Long-COVID in children and adolescents: a systematic review and meta-analyses[J]. Sci Rep, 2022, 12(1): 9950.
doi: 10.1038/s41598-022-13495-5 pmid: 35739136 |
[31] |
Tong T, Yao X, Lin Z, et al. Similarities and differences between MIS-C and KD: a systematic review and meta-analysis[J]. Pediatr Rheumatol Online J, 2022, 20(1): 112.
doi: 10.1186/s12969-022-00771-x pmid: 36471327 |
[32] |
Beukelman T, Patkar NM, Saag KG, et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features[J]. Arthritis Care Res (Hoboken), 2011, 63(4): 465‐482.
doi: 10.1002/acr.20460 pmid: 21452260 |
[33] |
Locatelli F, Jordan MB, Allen C, et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis[J]. N Engl J Med, 2020, 382(19): 1811-1822.
doi: 10.1056/NEJMoa1911326 |
[34] |
De Benedetti F, Grom AA, Brogan PA, et al. Efficacy and safety of emapalumab in macrophage activation syndrome[J]. Ann Rheum Dis, 2023, 82(6): 857-865.
doi: 10.1136/ard-2022-223739 |
[35] | 郝胜, 黄文彦, 曾华松. 小分子靶向JAK抑制剂在儿童风湿免疫性疾病中的应用[J]. 中国实用儿科杂志, 2021, 36(11): 853-857. |
[36] | 赵坚, 谢利剑, 肖婷婷, 等. 联合体外膜肺治疗川崎病休克综合征1例报告并文献复习[J]. 临床儿科杂志, 2019, 37(9): 708-711. |
[37] |
Kim HK, Kim HG, Cho SJ, et al. Clinical characteristics of hemophagocytic lymphohistiocytosis related to Kawasaki disease[J]. Pediatr Hematol Oncol, 2011, 28(3): 230-236.
doi: 10.3109/08880018.2010.526685 pmid: 21381871 |
[38] |
Choi JE, Kwak Y, Huh JW, et al. Differentiation between incomplete Kawasaki disease and secondary hemophagocytic lymphohistiocytosis following Kawasaki disease using N-terminal pro-brain natriuretic peptide[J]. Korean J Pediatr, 2018, 61(5): 167-173.
doi: 10.3345/kjp.2018.61.5.167 pmid: 29853942 |
[39] |
Latino GA, Manlhiot C, Yeung RS, et al. Macrophage activation syndrome in the acute phase of Kawasaki disease[J]. J Pediatr Hematol Oncol, 2010, 32(7): 527-531.
doi: 10.1097/MPH.0b013e3181dccbf4 |
[40] |
Zou LX, Zhu Y, Sun L, et al. Clinical and laboratory features, treatment, and outcomes of macrophage activation syndrome in 80 children: a multi-center study in China[J]. World J Pediatr, 2020, 16(1): 89-98.
doi: 10.1007/s12519-019-00256-0 |
[1] | 罗明静, 余嘉明, 王晓东, 张小玲, 余阅, 张瑜, 文飞球, 刘四喜. 424例地中海贫血患儿异基因造血干细胞移植后继发侵袭性真菌病临床分析[J]. 临床儿科杂志, 2025, 43(1): 21-28. |
[2] | 刘冬霞, 金蓉, 林荣军. 儿童重症难治性肺炎支原体肺炎并发闭塞性支气管炎危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 29-34. |
[3] | 钟瑾虹, 王灿, 陈芳. 婴幼儿纤维支气管镜诊疗中镇静技术的研究进展[J]. 临床儿科杂志, 2025, 43(1): 50-55. |
[4] | 蒋卫芹, 王静, 程安娜, 陈婷婷, 黄玉娟. 儿童热性惊厥急性期惊厥复发的危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 8-13. |
[5] | 邱琇, 韦冬梅, 林珊珊, 夏慧敏, 周文浩. 广州出生队列研究的理念与实践[J]. 临床儿科杂志, 2024, 42(9): 747-752. |
[6] | 陈倩, 田英, 孙锟, 张军. 关注环境、立足疾病的大型出生队列研究平台[J]. 临床儿科杂志, 2024, 42(9): 753-757. |
[7] | 范建霞. 健康生命轨迹计划缘起与发展:社区-家庭-母婴多层面儿童超重与肥胖干预研究队列[J]. 临床儿科杂志, 2024, 42(9): 768-773. |
[8] | 姜涛, 李双杰, 唐莲, 欧阳文献. 慢性乙型肝炎患儿外周血MAIT细胞的免疫生物学特性[J]. 临床儿科杂志, 2024, 42(9): 787-790. |
[9] | 周洁, 刘克强, 王金玲, 王莹. MYH11延长突变导致巨膀胱-小结肠-肠蠕动不良综合征1例报告及文献复习[J]. 临床儿科杂志, 2024, 42(9): 798-804. |
[10] | 褚思嘉, 汤继宏. 儿童急性淋巴细胞白血病及其治疗所伴发的中枢神经系统损伤研究进展[J]. 临床儿科杂志, 2024, 42(9): 811-816. |
[11] | 丁亚平, 夏姗姗, 张晨美. 《2023年国际儿童肾脏营养工作组临床实践建议:儿童急性肾损伤的营养管理》解读[J]. 临床儿科杂志, 2024, 42(8): 667-672. |
[12] | 李怡蓉, 李惠萍, 高靖瑜, 肖玉华, 陈小敏, 卢艳玲, 赵娜娜, 冯晓勤. FLAG-IDA诱导化疗方案中不同剂量阿糖胞苷治疗儿童急性髓系白血病疗效比较[J]. 临床儿科杂志, 2024, 42(8): 673-677. |
[13] | 黄博, 董艳迎, 宋琳岚. 儿童传染性单核细胞增多症348例临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 678-683. |
[14] | 王丹, 邵静波, 李红, 张娜, 朱嘉莳, 付盼, 王真. 儿童血液系统恶性肿瘤并发肿瘤溶解综合征38例临床特点分析[J]. 临床儿科杂志, 2024, 42(8): 684-690. |
[15] | 马岩, 韦性娇, 白华, 张艳, 田新敏, Aqsa Ahmad, 梁丽俊. 西部地区某三甲医院儿童慢性肾脏病5期病因构成及临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 697-703. |
|