[1] |
McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): 927-999.
doi: 10.1161/CIR.0000000000000484
pmid: 28356445
|
[2] |
王雷, 夏焙. 超声心动图在川崎病诊断、治疗及长期随访中的应用进展[J]. 中华医学超声杂志, 2019, 16(3): 161-165.
|
[3] |
Litjens G, Ciompi F, Wolterink J M, et al. State-of-the-art deep learning in cardiovascular image analysis[J]. JACC Cardiovasc Imaging, 2019, 12(8): 1549-1565.
|
[4] |
Kusunose K, Haga A, Abe T, et al. Utilization of artificial intelligence in echocardiography[J]. Circ J, 2019, 83: 1623-1629.
doi: 10.1253/circj.CJ-19-0420
pmid: 31257314
|
[5] |
陶攀, 付忠良, 朱锴, 等. 基于深度学习的超声心动图切面识别方法[J]. 计算机应用, 2017, 37(5): 1434-1438.
doi: 10.11772/j.issn.1001-9081.2017.05.1434
|
[6] |
Tan W, Cao Y, Ma X, et al. Bayesian inference and dynamic neural feedback promote the clinical application of intelligent congenital heart disease diagnosis[J]. Engineering, 2023, 23: 90-102.
|
[7] |
Yang C, Ojha BD, Aranoff ND, et al. Classification of aortic stenosis using conventional machine learning and deep learning methods based on multi-dimensional cardio mechanical signals[J]. Sci Rep, 2020, 10(1): 17521.
|
[8] |
宋美琪, 徐皓煊, 汝童, 等. 人工智能在超声影像中的应用现状[J]. 中国中西医结合影像学杂志, 2020, 18(5): 528-533.
|
[9] |
Zhou J, Du M, Chang S, et al. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis[J]. Cardiovasc Ultrasound, 2021, 19(1): 29.
|
[10] |
Song D, Kim E, Huang X, et al. Multimodal entity coreference for cervical dysplasia diagnosis[J]. IEEE Trans Med Imaging, 2014, 34(1): 229-245.
|
[11] |
Lawrence S, Giles CL, Tsoi A, et al. Face recognition: a convolutional neural-network approach[J]. IEEE Transactions on Neural Netw, 1997, 8(1): 98-113.
|
[12] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA, 2016.
|
[13] |
陈思文, 刘玉江, 刘冬, 等. 基于AlexNet模型和自适应对比度增强的乳腺结节超声图像分类[J]. 计算机科学, 2019, 46(6): 146-153.
|
[14] |
Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding[J]. Evol Intell, 2021, 15(1): 1-22.
|
[15] |
Xie LP, Yan WL, Huang M, et al. Epidemiologic features of Kawasaki disease in Shanghai from 2013 through 2017[J]. J Epidemiol, 2020, 30(10): 429-435.
|
[16] |
Huang GY, Ma XJ, Huang M, et al. Epidemiologic pictures of Kawasaki disease in Shanghai from 1998 through 2002[J]. J Epidemiol. 2006, 16(1): 9-14.
|
[17] |
Ma XJ, Yu CY, Huang M, et al. Epidemiologic features of Kawasaki disease in Shanghai from 2003 through 2007[J]. Chin Med J (Engl), 2010, 123(19): 2629-2634.
|
[18] |
Chen JJ, Ma XJ, Liu F, et al. Epidemiologic features of Kawasaki disease in Shanghai from 2008 through 2012[J]. Pediatr Infect Dis J, 2016, 35(1): 7-12.
|
[19] |
Zhang J, Gajjala S, Tison GH, et al. Fully automated echocardiogram interpretation in clinical practice[J]. Circulation, 2018, 138: 1623-1635.
doi: 10.1161/CIRCULATIONAHA.118.034338
pmid: 30354459
|
[20] |
Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning[J]. NPJ Digit Med, 2018, 1:6.
|
[21] |
Kusunose K, Abe T, Haga A, et al. A Deep learning approach for assessment of regional wall motion abnormality from echocardiographic images[J]. ACC Cardiovasc Imaging, 2020, 13(1): 374-381.
|
[22] |
Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2022, 580(7802): 252-256.
|
[23] |
Leha A, Hellenkamp K, Unsold B, et al. A machine learning approach for the prediction of pulmonary hypertension[J]. PLoS ONE, 2021, 14(10): e0224453.
|
[24] |
Xu E, Nemati S, Tremoulet AH. A deep convolutional neural network for Kawasaki disease diagnosis[J]. Sci Rep, 2022, 12(1): 11438.
doi: 10.1038/s41598-022-15495-x
pmid: 35794205
|