[1] |
World Health Organization. Global tuberculosis report 2022 [EB/OL]. Geneva: World Health Organization, 2022 [2024-8-22]. http://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022.
|
[2] |
Schaaf HS, Hughes J. Current treatment of drug-resistant tuberculosis in children[J]. Indian J Pediatr, 2024, 91(8): 806-816.
|
[3] |
Guo Q, Pan Y, Yang Z, et al. Epidemiology and clinical characteristics of pediatric drug-resistant tuberculosis in Chongqing, China[J]. PLoS One, 2016, 11(3): e0151303.
|
[4] |
Zhang Y, Zhao R, Zhang Z, et al. Analysis of factors influencing multidrug-resistant tuberculosis and validation of whole-genome sequencing in children with drug-resistant tuberculosis[J]. Infect Drug Resist, 2021, 14: 4375-4393.
doi: 10.2147/IDR.S331890
pmid: 34729015
|
[5] |
World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis. Tests for tuberculosis infection[M/OL]. Geneva: World Health Organization, 2022.
|
[6] |
赵雁林, 逄宇. 结核病实验室检验规程[M]. 北京: 人民卫生出版社, 2015.
|
[7] |
张颖, 任巧丽, 赵瑞秋, 等. 儿童抗结核药物耐药比例法、微孔板法、全基因组测序检测对比研究[J]. 临床儿科杂志, 2023, 41(2): 117-124.
|
[8] |
Wiseman CA, Gie RP, Starke JR, et al. A proposed comprehensive classification of tuberculosis disease severity in children[J]. Pediatr Infect Dis J, 2012, 31(4): 347-352.
doi: 10.1097/INF.0b013e318243e27b
pmid: 22315002
|
[9] |
Linh NN, Viney K, Gegia M, et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update[J]. Eur Respir J, 2021, 58(2):2100804.
|
[10] |
中华人民共和国国家卫生和计划生育委员会. 肺结核诊断标准(WS 288-2017)[J]. 新发传染病电子杂志, 2018, 3(1): 59-61.
|
[11] |
Lam C, Martinez E, Crighton T, et al. Value of routine whole genome sequencing for Mycobacterium tuberculosis drug resistance detection[J]. Int J Infect Dis, 2021, 113 Suppl 1: S48-S54.
|
[12] |
Zhao J, Qian C, Jiang Y, et al. Drug-resistant characteristics, genetic diversity, and transmission dynamics of multidrug-resistant Mycobacterium tuberculosis in Jiangxi, China[J]. Infect Drug Resist, 2024, 17: 2213-2223.
|
[13] |
Imran M. Ethionamide and prothionamide based coumarinyl-thiazole derivatives: synthesis, antitubercular activity, toxicity investigations and molecular docking studies[J]. Pharm Chem J, 2022, 56(9): 1215-1225.
|
[14] |
Ma P, Luo T, Ge L, et al. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region[J]. Emerg Microbes Infect, 2021, 10(1): 743-752.
|
[15] |
Fisher C, Patel R. Rifampin, rifapentine, and rifabutin are active against intracellular periprosthetic joint infection-associated Staphylococcus epidermidis[J]. Antimicrob Agents Chemother, 2021, 65(2):e01275-20.
|
[16] |
Naz F, Ahmad N, Wahid A, et al. High rate of successful treatment outcomes among childhood rifampicin/multidrug-resistant tuberculosis in Pakistan: a multicentre retrospective observational analysis[J]. BMC Infect Dis, 2021, 21(1): 1209.
doi: 10.1186/s12879-021-06935-6
pmid: 34863099
|
[17] |
Jia H, Xu Y, Sun Z. Analysis on drug-resistance-associated mutations among multidrug-resistant Mycobacterium tuberculosis isolates in China[J]. Antibiotics (Basel), 2021, 10(11): 1367.
|
[18] |
Chauffour A, Morel F, Reibel F, et al. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance[J]. Clin Microbiol Infect, 2021, 27(11): 1601-1612.
|
[19] |
Singh PK, Singh U, Jain A. Emergence of specific gyrA mutations associated high-level fluoroquinolone-resistant Mycobacterium tuberculosis among multidrug-resistant tuberculosis cases in North India[J]. Microb Drug Resist, 2021, 27(5): 647-651.
|
[20] |
Kabir S, Tahir Z, Mukhtar N, et al. Fluoroquinolone resistance and mutational profile of gyrA in pulmonary MDR tuberculosis patients[J]. BMC Pulm Med, 2020, 20(1): 138.
doi: 10.1186/s12890-020-1172-4
pmid: 32393213
|
[21] |
Lu Z, Jiang W, Zhang J, et al. Drug resistance and epidemiology characteristics of multidrug-resistant tuberculosis patients in 17 provinces of China[J]. PLoS One, 2019, 14(11): e0225361.
|
[22] |
Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment-2017; Ahmad N, Ahuja SD, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis[J]. Lancet, 2018, 392(10150): 821-834.
|
[23] |
Islam MM, Tan Y, Hameed HMA, et al. Prevalence and molecular characterization of amikacin resistance among Mycobacterium tuberculosis clinical isolates from southern China[J]. J Glob Antimicrob Resist, 2020, 22: 290-295.
|
[24] |
张春华, 李涛, 杜昕, 等. 2019-2021年我国4省份报告儿童肺结核病例特征分析[J]. 中华流行病学杂志, 2022, 43(11): 1739-1745.
|
[25] |
Li CH, Fan X, Lv SX, et al. Clinical and computed tomography features associated with multidrug-resistant pulmonary tuberculosis: a retrospective study in China[J]. Infect Drug Resist, 2023, 16: 651-659.
|
[26] |
Negi K, Bhaskar A, Dwivedi VP. Progressive host-directed strategies to potentiate BCG vaccination against tuberculosis[J]. Front Immunol, 2022, 13: 944183.
|
[27] |
Xu Y, Li Q, Zhu M, et al. The epidemiological characteristics and profile of drug-resistant tuberculosis among children with tuberculosis in Sichuan, China, 2015-2018: A retrospective study[J]. Medicine (Baltimore), 2020, 99(43): e22608.
|
[28] |
Song QS, Zheng CJ, Wang KP, et al. Differences in pulmonary nodular consolidation and pulmonary cavity among drug-sensitive, rifampicin-resistant and multi-drug resistant tuberculosis patients: a computerized tomography study with history length matched cases[J]. J Thorac Dis, 2022, 14(7): 2522-2531.
|
[29] |
廖琼, 谭珊, 朱渝, 等. 儿童耐药结核病的临床特点及二线抗结核治疗效果分析[J]. 中华儿科杂志, 2017, 55(2): 100-103.
|
[30] |
Wang Y, Sun Q, Zhang Y. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas[J]. J Infect, 2023, 86(5): 421-438.
doi: 10.1016/j.jinf.2023.03.020
pmid: 37003521
|