| [1] | 
																						 
											  Acquaviva C, Benoist JF, Pereira S, et al.  Molecular basis of methylmalonyl-CoA mutase apoenzyme defect in 40 European patients affected by mut(o) and mut- forms of methylmalonic acidemia: identification of 29 novel mutations in the MUT gene[J]. Hum Mutat, 2005, 25(2): 167-176. 
											 												 
																																					pmid: 15643616
																							 											 | 
										
																													
																						| [2] | 
																						 
											  杨艳玲, 韩连书. 单纯型甲基丙二酸尿症饮食治疗与营养管理专家共识[J]. 中国实用儿科杂志, 2018, 33(7): 481-486.
											 											 | 
										
																													
																						| [3] | 
																						 
											  Jiang YZ, Sun LY. The value of liver transplantation for methylmalonic acidemia[J]. Front Pediatr, 2019, 7: 87.
											 											 | 
										
																													
																						| [4] | 
																						 
											  High KA, Roncarolo MG. Gene therapy[J]. N Engl J Med, 2019, 381(5): 455-464.
											 											 | 
										
																													
																						| [5] | 
																						 
											  Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview[J]. J Clin Diagn Res, 2015, 9(1): Ge01- Ge06.
											 											 | 
										
																													
																						| [6] | 
																						 
											  Chandler RJ, Tsai MS, Dorko K, et al.  Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes[J]. BMC Med Genet, 2007, 8: 24. 
											 												 
																																					pmid: 17470278
																							 											 | 
										
																													
																						| [7] | 
																						 
											  Peters H, Nefedov M, Sarsero J, et al.  A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality[J]. J Biol Chem, 2003, 278(52): 52909-52913. 
											 												 
																									doi: 10.1074/jbc.M310533200
																																					pmid: 14555645
																							 											 | 
										
																													
																						| [8] | 
																						 
											  Chandler RJ, Venditti CP. Genetic and genomic systems to study methylmalonic acidemia[J]. Mol Genet Metab, 2005, 86(1-2): 34-43. 
											 												 
																																					pmid: 16182581
																							 											 | 
										
																													
																						| [9] | 
																						 
											  Chandler RJ, Venditti CP. Adenovirus-mediated gene delivery rescues a neonatal lethal murine model of mut(0) methylmalonic acidemia[J]. Hum Gene Ther, 2008, 19(1): 53-60. 
											 												 
																									doi: 10.1089/hum.2007.0118
																																					pmid: 18052792
																							 											 | 
										
																													
																						| [10] | 
																						 
											  Zhong L, Granelli-Piperno A, Choi Y, et al.  Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells[J]. Eur J Immunol, 1999, 29(3): 964-972. 
											 												 
																																					pmid: 10092101
																							 											 | 
										
																													
																						| [11] | 
																						 
											  Gao G, Vandenberghe LH, Alvira MR, et al.  Clades of adeno-associated viruses are widely disseminated in human tissues[J]. J Virol, 2004, 78(12): 6381-6388. 
											 												 
																																					pmid: 15163731
																							 											 | 
										
																													
																						| [12] | 
																						 
											  Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy[J]. Mol Ther, 2006, 14(3): 316-327. 
											 												 
																									doi: 10.1016/j.ymthe.2006.05.009
																																					pmid: 16824801
																							 											 | 
										
																													
																						| [13] | 
																						 
											  Chandler RJ, Venditti CP. Long-term rescue of a lethal murine model of methylmalonic acidemia using adeno-associated viral gene therapy[J]. Mol Ther, 2010, 18(1): 11-16. 
											 												 
																									doi: 10.1038/mt.2009.247
																																					pmid: 19861951
																							 											 | 
										
																													
																						| [14] | 
																						 
											  Carrillo-Carrasco N, Chandler RJ, Chandrasekaran S, et al.  Liver-directed recombinant adeno-associated viral gene delivery rescues a lethal mouse model of methylmalonic acidemia and provides long-term phenotypic correction[J]. Hum Gene Ther, 2010, 21(9): 1147-1154. 
											 												 
																									doi: 10.1089/hum.2010.008
																																					pmid: 20486773
																							 											 | 
										
																													
																						| [15] | 
																						 
											  Senac JS, Chandler RJ, Sysol JR, et al.  Gene therapy in a murine model of methylmalonic acidemia using rAAV9-mediated gene delivery[J]. Gene Ther, 2012, 19(4): 385-391. 
											 												 
																									doi: 10.1038/gt.2011.108
																																					pmid: 21776024
																							 											 | 
										
																													
																						| [16] | 
																						 
											  Chandler RJ, Venditti CP. Pre-clinical efficacy and dosing of an AAV8 vector expressing human methylmalonyl-CoA mutase in a murine model of methylmalonic acidemia (MMA)[J]. Mol Genet Metab, 2012, 107(3): 617-619. 
											 												 
																									doi: 10.1016/j.ymgme.2012.09.019
																																					pmid: 23046887
																							 											 | 
										
																													
																						| [17] | 
																						 
											  Manoli I, Sysol JR, Epping MW, et al.  FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia[J]. JCI Insight, 2018, 3(23): e124351.
											 											 | 
										
																													
																						| [18] | 
																						 
											  Manoli I, Sysol J, Li L, et al.  Muscle targeted transgene expression rescues the lethal phenotype of Mut knockout mice[C]. 34th Annual Meeting of the Society-for-Inherited-Metabolic-Disorders. 2011.
											 											 | 
										
																													
																						| [19] | 
																						 
											  Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape[J]. Annu Rev Virol, 2017, 4(1): 511-534. 
											 												 
																									doi: 10.1146/annurev-virology-101416-041936
																																					pmid: 28961410
																							 											 | 
										
																													
																						| [20] | 
																						 
											  Chandler RJ, Di Pasquale G, Sloan JL, et al.  Systemic gene therapy for methylmalonic acidemia using the novel adeno-associated viral vector 44.9[J]. Mol Ther Methods Clin Dev, 2022, 27: 61-72.
											 											 | 
										
																													
																						| [21] | 
																						 
											  Kishimoto TK. Development of ImmTOR tolerogenic nanoparticles for the mitigation of anti-drug antibodies[J]. Front Immunol, 2020, 11: 969. 
											 												 
																									doi: 10.3389/fimmu.2020.00969
																																					pmid: 32508839
																							 											 | 
										
																													
																						| [22] | 
																						 
											  Ilyinskii PO, Michaud AM, Rizzo GL, et al.  ImmTOR nanoparticles enhance AAV transgene expression after initial and repeat dosing in a mouse model of methylmalonic acidemia[J]. Mol Ther Methods Clin Dev, 2021, 22: 279-292.
											 											 | 
										
																													
																						| [23] | 
																						 
											  Marshall H M, Ronen K, Berry C, et al.  Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting[J]. PLoS One, 2007, 2(12): e1340. 
											 												 
																									doi: 10.1371/journal.pone.0001340
																																					pmid: 18092005
																							 											 | 
										
																													
																						| [24] | 
																						 
											  Wong ES, McIntyre C, Peters HL, et al.  Correction of methylmalonic aciduria in vivo using a codon-optimized lentiviral vector[J]. Hum Gene Ther, 2014, 25(6): 529-538. 
											 												 
																									doi: 10.1089/hum.2013.111
																																					pmid: 24568291
																							 											 | 
										
																													
																						| [25] | 
																						 
											  Peters HL, Pitt JJ, Wood LR, et al.  Mouse models for methylmalonic aciduria[J]. PLoS One, 2012, 7(7): e40609.
											 											 | 
										
																													
																						| [26] | 
																						 
											  Bulcha JT, Wang Y, Ma H, et al.  Viral vector platforms within the gene therapy landscape[J]. Signal Transduct Target Ther, 2021, 6(1): 53.
											 											 | 
										
																													
																						| [27] | 
																						 
											  罗小平, 应艳琴. 基因编辑与遗传代谢性疾病[J]. 中国儿童保健杂志, 2021, 29(7): 697-700. 
											 												 
																									doi: 10.11852/zgetbjzz2021-0965
																																			 											 | 
										
																													
																						| [28] | 
																						 
											  Barzel A, Paulk NK, Shi Y, et al.  Promoterless gene targeting without nucleases ameliorates haemophilia B in mice[J]. Nature, 2015, 517(7534): 360-364.
											 											 | 
										
																													
																						| [29] | 
																						 
											  Chandler RJ, Venturoni LE, Liao J, et al.  Promoterless, nuclease-free genome editing confers a growth advantage for corrected hepatocytes in mice with methylmalonic acidemia[J]. Hepatology, 2021, 73(6): 2223-2237.
											 											 | 
										
																													
																						| [30] | 
																						 
											  An D, Schneller JL, Frassetto A, et al.  Systemic messenger RNA therapy as a treatment for methylmalonic acidemia[J]. Cell Rep, 2017, 21(12): 3548-3558. 
											 												 
																									doi: S2211-1247(17)31748-5
																																					pmid: 29262333
																							 											 | 
										
																													
																						| [31] | 
																						 
											  An D, Frassetto A, Jacquinet E, et al.  Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia[J]. EBioMedicine, 2019, 45: 519-528. 
											 												 
																									doi: S2352-3964(19)30438-4
																																					pmid: 31303505
																							 											 | 
										
																													
																						| [32] | 
																						 
											  Loughrey D, Dahlman JE. Non-liver mRNA delivery[J]. Acc Chem Res, 2022, 55(1): 13-23.
											 											 | 
										
																													
																						| [33] | 
																						 
											  Witzigmann D, Kulkarni JA, Leung y, et al.  Lipid nanopaticle technology for therapeutic gene regulation in the liverlyl[J]. Ady Drug Deliy Rev, 2020(159): 344-363.
											 											 |