[1] |
Wu B, Kang W, Wang Y, et al. Application of full-spectrum rapid clinical genome sequencing improves diagnostic rate and clinical outcomes in critically ill infants in the China Neonatal Genomes Project[J]. Crit Care Med, 2021, 49(10): 1674-1683.
doi: 10.1097/CCM.0000000000005052
pmid: 33935161
|
[2] |
National Organization for Rare Diseases. Global Genes Project[EB/OL]. https://rarediseases.org/
|
[3] |
Wang H, Qian Y, Lu Y, et al. Clinical utility of 24-h rapid trio-exome sequencing for critically ill infants[J]. NPJ Genom Med, 2020, 5: 20.
doi: 10.1038/s41525-020-0129-0
pmid: 32411386
|
[4] |
Tan TY, Dillon OJ, Stark Z, et al. Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions[J]. JAMA Pediatr, 2017, 171(9): 855-862.
doi: 10.1001/jamapediatrics.2017.1755
pmid: 28759686
|
[5] |
Meng L, Pammi M, Saronwala A, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management[J]. JAMA Pediatr, 2017, 171(12): e173438.
doi: 10.1001/jamapediatrics.2017.3438
|
[6] |
中国遗传学会遗传咨询分会. 中国新生儿基因组计划[DB/OL]. (2016) [2022-03-07]. http://www.cbgc.org.cn/projects/2016/0817/569.html?1487814155.
|
[7] |
Genetic Counseling Branch of Chinese Genetic Society. China Neonatal Genome Project[DB/OL]. (2016) [2022-03-07]. http://www.cbgc.org.cn/projects/2016/0817/569.html?148781415.
|
[8] |
Wojcik MH, Gold NB. Implications of genomic newborn screening for infant mortality[J]. Int J Neonatal Screen, 2023, 9(1): 12.
doi: 10.3390/ijns9010012
|
[9] |
Xiao T, Ni Q, Chen H, et al. High-risk phenotypes of genetic disease in a neonatal intensive care unit population[J]. Chin Med J (Engl), 2022, 135(5): 625-627.
|
[10] |
Wang J, Zhou WH. Epigenetic clocks in the pediatric population: when and why they tick?[J]. Chin Med J (Engl), 2021, 134(24): 2901-2910.
|
[11] |
Huang S, Liu S, Huang M, et al.. The Born in Guangzhou Cohort Study enables generational genetic discoveries[J]. Nature, 2024, 626(7999): 565-573.
doi: 10.1038/s41586-023-06988-4
|
[12] |
Zhu Y, Hu L, Yang L, et al. Association between expanded genomic sequencing combined with hearing screening and detection of hearing loss among newborns in a neonatal intensive care unit[J]. JAMA Netw Open, 2022, 5(7): e2220986.
|
[13] |
Tong F, Wang J, Xiao R, et al. Application of next generation sequencing in the screening of monogenic diseases in China, 2021: a consensus among Chinese newborn screening experts[J]. World J Pediatr, 2022, 18(4): 235-242.
doi: 10.1007/s12519-022-00522-8
pmid: 35292922
|
[14] |
Singh S, Ojodu J, Kemper AR, et al. Implementation of newborn screening for conditions in the United States first recommended during 2010-2018[J]. Int J Neonatal Screen, 2023, 9(2): 20.
|
[15] |
Dong X, Xiao T, Chen B, et al. Precision medicine via the integration of phenotype-genotype information in neonatal genome project[J]. 自然科学基础研究: 英文版, 2022.
|
[16] |
Yang L, Kong Y, Dong X, et al. Clinical and genetic spectrum of a large cohort of children with epilepsy in China[J]. Genet Med, 2019, 21(3): 564-571.
doi: 10.1038/s41436-018-0091-8
pmid: 29930392
|
[17] |
Yang L, Liu X, Li Z, et al.. Genetic aetiology of early infant deaths in a neonatal intensive care unit[J]. J Med Genet, 2020, 57(3): 169-177.
doi: 10.1136/jmedgenet-2019-106221
pmid: 31501239
|
[18] |
Mei H, Dong X, Wu B, et al. Clinical and genetic etiologies of neonatal unconjugated hyperbilirubinemia in the China Neonatal Genomes Project[J]. J Pediatr, 2022, 243: 53-60.
doi: 10.1016/j.jpeds.2021.12.038
|
[19] |
Bainbridge MN, Wiszniewski W, Murdock DR, et al. Whole-genome sequencing for optimized patient management[J]. Sci Transl Med, 2011, 3(87): 87re3.
|