[1] |
Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, et al. The current landscape of CAR T-cell therapy for solid tumors: mechanisms, research progress, challenges, and counterstrategies[J]. Front Immunol, 2023, 14: 1113882.
|
[2] |
Pui CH, Yang JJ, Hunger SP, et al. Childhood acute lymphoblastic leukemia: progress through collaboration[J]. J Clin Oncol, 2015, 33(27): 2938-2948.
|
[3] |
Gupta A, Cripe TP. Immunotherapies for pediatric solid tumors: a targeted update[J]. Paediatr Drugs, 2022, 24(1): 1-12.
|
[4] |
Wang F, Fu K, Wang Y, et al. Small-molecule agents for cancer immunotherapy[J]. Acta Pharm Sin B, 2024, 14(3): 905-952.
doi: 10.1016/j.apsb.2023.12.010
pmid: 38486980
|
[5] |
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, et al. Monoclonal antibody therapies for hematological malignancies: not just lineage-specific targets[J]. Front Immunol, 2017, 8: 1936.
doi: 10.3389/fimmu.2017.01936
pmid: 29387053
|
[6] |
Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far[J]. Nat Rev Clin Oncol, 2023, 20(6): 359-371.
doi: 10.1038/s41571-023-00754-1
pmid: 37055515
|
[7] |
Talleur AC, Qudeimat A, Métais JY, et al. Preferential expansion of CD8+ CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL[J]. Blood Adv, 2022, 6(21): 5737-5749.
|
[8] |
Zhu M, Wu B, Brandl C, et al. Blinatumomab, a bispecific T-cell engager (BiTE®) for CD19- targeted cancer immunotherapy: clinical pharmacology and its implications[J]. Clin Pharmacokinet, 2016, 55(10): 1271-1288.
|
[9] |
Wang T, Tang Y, Cai J, et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-Cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase Ⅱ trial[J]. J Clin Oncol, 2023, 41(9): 1670-1683.
|
[10] |
Xiao X, Huang S, Chen S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies[J]. J Exp Clin Cancer Res, 2021, 40(1): 367.
doi: 10.1186/s13046-021-02148-6
pmid: 34794490
|
[11] |
Siegler EL, Kenderian SS. Neurotoxicity and cytokine release syndrome after chimeric antigen receptor T cell therapy: insights into mechanisms and novel therapies[J]. Front Immunol, 2020, 11: 1973.
doi: 10.3389/fimmu.2020.01973
pmid: 32983132
|
[12] |
Hines MR, Knight TE, McNerney KO, et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome[J]. Transplant Cell Ther, 2023, 29(7): 438.
|
[13] |
Wat J, Barmettler S. Hypogammaglobulinemia after chimeric antigen receptor CAR T-cell therapy: characteristics, management, and future directions[J]. J Allergy Clin Immunol Pract, 2022, 10(2): 460-466.
|
[14] |
Jain MD, Smith M, Shah NN. How I treat refractory CRS and ICANS after CAR T-cell therapy[J]. Blood, 2023, 141(20): 2430-2442.
|
[15] |
Zhang Y, Zhou F, Wu Z, et al. Timing of tocilizumab administration under the guidance of IL-6 in CAR-T therapy for R/R acute lymphoblastic leukemia[J]. Front Immunol, 2022, 13:914959.
|
[16] |
Rainone M, Ngo D, Baird JH, et al. Interferon-γ blockade in CAR T-cell therapy-associated macrophage activation syndrome/hemophagocytic lymphohistiocytosis[J]. Blood Adv, 2023, 7(4): 533-536.
|
[17] |
Manni S, Del Bufalo F, Merli P, et al. Neutralizing IFNγ improves safety without compromising efficacy of CAR-T cell therapy in B-cell malignancies[J]. Nat Commun, 2023, 14(1): 3423.
doi: 10.1038/s41467-023-38723-y
pmid: 37296093
|
[18] |
Xu N, Yang XF, Xue SL, et al. Ruxolitinib reduces severe CRS response by suspending CAR-T cell function instead of damaging CAR-T cells[J]. Biochem Biophys Res Commun, 2022, 595: 54-61.
|
[19] |
Mestermann K, Giavridis T, Weber J, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells[J]. Sci Transl Med, 2019, 11(499): eaau5907.
|
[20] |
Ventin M, Cattaneo G, Maggs L, et al. Implications of high tumor burden on chimeric antigen receptor T-Cell immunotherapy: a review[J]. JAMA Oncol, 2024, 10(1): 115-121.
|
[21] |
Sterner RC, Sterner RM. Immune effector cell associated neurotoxicity syndrome in chimeric antigen receptor-T cell therapy[J]. Front Immunol, 2022, 13:879608.
|
[22] |
Gu T, Hu K, Si X, et al. Mechanisms of immune effector cell-associated neurotoxicity syndrome after CAR-T treatment[J]. WIREs Mech Dis, 2022, 14(6): e1576.
|
[23] |
Sheth VS, Gauthier J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL[J]. Bone Marrow Transplant, 2021, 56(3): 552-566.
|
[24] |
Gatto L, Ricciotti I, Tosoni A, et al. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap[J]. Front Oncol, 2023, 13: 1206983.
|
[25] |
Nix MA, Mandal K, Geng H, et al. Surface proteomics reveals CD72 as a target for in vitro-evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL[J]. Cancer Discov, 2021, 11(8): 2032-2049.
doi: 10.1158/2159-8290.CD-20-0242
pmid: 33727310
|
[26] |
Leung KT, Cai J, Liu Y, et al. Prognostic implications of CD9 in childhood acute lymphoblastic leukemia: insights from a nationwide multicenter study in China[J]. Leukemia, 2024, 38(2): 250-257.
doi: 10.1038/s41375-023-02089-3
pmid: 38001171
|
[27] |
Zhao Z, Sadelain M. CAR T cell design: approaching the elusive AND-gate[J]. Cell Res, 2023, 33(10): 739-740.
doi: 10.1038/s41422-023-00828-w
pmid: 37221269
|
[28] |
Coorens THH, Collord G, Treger TD, et al. Clonal origin of KMT2A wild-type lineage-switch leukemia following CAR-T cell and blinatumomab therapy[J]. Nature Cancer, 2023, 4(8): 1095-1101.
|
[29] |
Gu R, Liu W, Mei Y, et al. The impact of ZNF384 rearranged on antigen editing during treatment-specific selective pressures in adult B cell acute lymphoid leukemia[J]. Blood, 2023, 142: 4209.
|
[30] |
De Bie J, Demeyer S, Gielen O, et al. BCR-ABL1 positive B-ALL can undergo T-cell lineage shift to become CD19 negative T-ALL[J]. HemaSphere, 2018, 2(3): e42.
|
[31] |
Liang M, Gong D, Wang L, et al. PAX5 haploinsufficiency induced CD8+ T cells dysfunction or exhaustion by high expression of immune inhibitory-related molecules[J]. Cancer Treat Res Commun, 2021, 28: 100437.
|
[32] |
Majzner RG, Ramakrishna S, Yeom KW, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas[J]. Nature, 2022, 603(7903): 934-941.
|
[33] |
Bufalo FD, Angelis BD, Caruana I, et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma[J]. N Engl J Med, 2023, 388(14): 1284-1295.
|
[34] |
Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances[J]. Mol Cancer, 2023, 22(1): 20.
doi: 10.1186/s12943-023-01723-z
pmid: 36717905
|
[35] |
Ayala Ceja M, Khericha M, Harris CM, et al. CAR-T cell manufacturing: major process parameters and next-generation strategies[J]. J Exp Med, 2024, 221(2): e20230903.
|
[36] |
Yang J, He J, Zhang X, et al. Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study[J]. Blood Cancer J, 2022, 12(7): 104.
doi: 10.1038/s41408-022-00694-6
pmid: 35798714
|
[37] |
Lin H, Cheng J, Mu W, et al. Advances in universal CAR-T cell therapy[J]. Front Immunol, 2021, 12:744823.
|
[38] |
Jo S, Das S, Williams A, et al. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing[J]. Nat Commun, 2022, 13(1): 3453.
doi: 10.1038/s41467-022-30896-2
pmid: 35773273
|
[39] |
Muller F, Taubmann J, Bucci L, et al. CD19 CAR T-cell therapy in autoimmune disease - a case series with follow-up[J]. N Engl J Med, 2024, 390(8): 687-700.
|
[40] |
Schett G, Mackensen A, Mougiakakos D. CAR T-cell therapy in autoimmune diseases[J]. Lancet, 2023, 402(10416): 2034-2044.
doi: 10.1016/S0140-6736(23)01126-1
pmid: 37748491
|