[1] |
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15.
doi: 10.1007/s00281-020-00785-1
pmid: 32020334
|
[2] |
陈少甜, 杨男. 脂质代谢在哮喘中作用机制的研究进展[J]. 临床儿科杂志, 2024, 42(5): 461-466.
|
|
Chen ST, Yang N. Research progress on mechanism of lipid metabolism in asthma[J]. Linchuang Erke Zazhi, 2024, 42(5): 461-466.
|
[3] |
李丹, 张睿, 刘峰, 等. 超重和肥胖与哮喘患儿肺功能的相关性研究[J]. 临床儿科杂志, 2024, 42(5): 429-433.
|
|
Li D, Zhang R, Liu F, et al. Correlation between overweight and obesity and lung function in children with asthma[J]. Linchuang Erke Zazhi, 2024, 42(5): 429-433.
|
[4] |
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma[J]. J Allergy Clin Immunol, 2020, 145(6): 1499-1509.
doi: S0091-6749(20)30553-4
pmid: 32507228
|
[5] |
Frey A, Lunding LP, Ehlers JC, et al. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis[J]. Front Immunol, 2020, 11: 761.
doi: 10.3389/fimmu.2020.00761
pmid: 32411147
|
[6] |
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, et al. Transcriptional regulation of airway epithelial cell differentiation: insights into the notch pathway and beyond[J]. Int J Mol Sci, 2023, 24(19): 14789.
|
[7] |
Gomi K, Arbelaez V, Crystal RG, et al. Activation of NOTCH1 or NOTCH3 signaling skews human airway basal cell differentiation toward a secretory pathway[J]. PloS one, 2015, 10(2): e0116507.
|
[8] |
Raby KL, Michaeloudes C, Tonkin J, et al. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD[J]. Front Immunol, 2023, 14: 1201658.
|
[9] |
Popov G, Aleksandrov R, Petkova V, et al. Analysis of bacterial biofilm formation and MUC5AC and MUC5B expression in chronic rhinosinusitis patients[J]. J Clin Med, 2023, 12(5): 1808.
|
[10] |
Reid AT, Nichol KS, Chander Veerati P, et al. Blocking notch3 signaling abolishes MUC5AC production in airway epithelial cells from individuals with asthma[J]. Am J Respir Cell Mol Biol, 2020, 62(4): 513-523.
|
[11] |
Xu J, Yu H, Sun X. Less is more: rare pulmonary neuroendocrine cells function as critical sensors in lung[J]. Dev Cell, 2020, 55(2): 123-132.
doi: 10.1016/j.devcel.2020.09.024
pmid: 33108755
|
[12] |
Sui P, Wiesner DL, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses[J]. Science, 2018, 360(6393): eaan8546.
|
[13] |
Zhu L, An L, Ran D, et al. The club cell marker SCGB1A1 downstream of FOXA2 is reduced in asthma[J]. Am J Respir Cell Mol Biol, 2019, 60(6): 695-704.
|
[14] |
Singh S, Dutta J, Ray A, et al. Airway epithelium: a neglected but crucial cell type in asthma pathobiology[J]. Diagnostics (Basel), 2023, 13(4): 808.
|
[15] |
Busse WW, Kraft M, Rabe KF, et al. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation[J]. Eur Respir J, 2021, 58(2): 2003393.
|
[16] |
Kim HY, Jeong D, Kim JH, et al. Innate type-2 cytokines: from immune regulation to therapeutic targets[J]. Immune Netw, 2024, 24(1): e6.
|
[17] |
Hamilton D, Lehman H. Asthma phenotypes as a guide for current and future biologic therapies[J]. Clin Rev Allergy Immunol, 2020, 59(2): 160-174.
|
[18] |
Bachert C, Hicks A, Gane S, et al. The interleukin-4/interleukin-13 pathway in type 2 inflammation in chronic rhinosinusitis with nasal polyps[J]. Front Immunol, 2024, 15: 1356298.
|
[19] |
Tubau C, Puig L. Therapeutic targeting of the IL-13 pathway in skin inflammation[J]. Expert Rev Clin Immunol, 2021, 17(1): 15-25.
|
[20] |
Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma[J]. Front Immunol, 2023, 14: 1149203.
|
[21] |
Xing Z, Liu S, He X. Critical and diverse role of alarmin cytokines in parasitic infections[J]. Front Cell Infect Microbiol, 2024, 14: 1418500.
|
[22] |
Jin J, Chen X, Zhao Y, et al. The role and its regulatory significance of interleukin-25 in ovalbumin induced atopic dermatitis of mice[J]. Beijing Da Xue Xue Bao Yi Xue Ban, 2024, 56(5): 756-762.
|
[23] |
Porsbjerg CM, Sverrild A, Lloyd CM, et al. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics[J]. Eur Respir J, 2020, 56(5): 2000260.
|
[24] |
Gauvreau GM, Hohlfeld JM, FitzGerald JM, et al. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma[J]. Eur Respir J, 2023, 61(3): 2201193.
|
[25] |
Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma[J]. N Engl J Med, 2021, 385(18): 1656-1668.
|
[26] |
Mosbech CH, Godtfredsen NS, Ulrik CS, Westergaard CG. Biomarker-guided withdrawal of inhaled corticosteroids in asthma patients with a non-T2 inflammatory phenotype - a randomized controlled trial study protocol[J]. BMC Pulm Med, 2023, 23(1): 372.
|
[27] |
Jeong J, Lee HK. The role of CD4+ T cells and microbiota in the pathogenesis of asthma[J]. Int J Mol Sci, 2021, 22(21): 11822.
|
[28] |
Yang Y, Jia M, Ou Y, et al. Mechanisms and biomarkers of airway epithelial cell damage in asthma: a review[J]. Clin Respir J, 2021, 15(10): 1027-1045.
|
[29] |
Tota M, Łacwik J, Laska J, et al. The role of eosinophil-derived neurotoxin and vascular endothelial growth factor in the pathogenesis of eosinophilic asthma[J]. Cells, 2023, 12(9): 1326.
|
[30] |
Cao L, Liu F, Liu Y, et al. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast[J]. Exp Lung Res, 2018, 44(6): 288-301.
doi: 10.1080/01902148.2018.1536175
pmid: 30428724
|
[31] |
Jin A, Tang X, Zhai W, et al. TSLP-induced collagen type-I synthesis through STAT3 and PRMT1 is sensitive to calcitriol in human lung fibroblasts[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(10): 119083.
|
[32] |
Braile M, Fiorelli A, Sorriento D, et al. Human lung-resident macrophages express and are targets of thymic stromal lymphopoietin in the tumor microenvironment[J]. Cells, 2021, 10(8): 2012.
|
[33] |
Gomułka K, Tota M, Brzdąk K. Effect of VEGF stimulation on CD11b receptor on peripheral eosinophils in asthmatics[J]. Int J Mol Sci, 2023, 24(10): 8880.
|
[34] |
Xu X, Luo S, Li B, et al. IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts[J]. Exp Biol Med (Maywood), 2019, 244(9): 770-780.
|
[35] |
Gauvreau GM, Bergeron C, Boulet LP, et al. Sounding the alarmins-The role of alarmin cytokines in asthma[J]. Allergy, 2023, 78(2): 402-417.
|
[36] |
Tan QY, Cheng ZS. TGFβ1-smad signaling pathway participates in interleukin-33 induced epithelial-to-mesenchymal transition of A549 cells[J]. Cell Physiol Biochem, 2018, 50(2):757-767.
|
[37] |
Oda N, Miyahara N, Taniguchi A, et al. Requirement for neuropeptide Y in the development of type 2 responses and allergen-induced airway hyperresponsiveness and inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(3): L407-L417.
|
[38] |
Arzola-Martínez L, Benavente R, Vega G, et al. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(2): L466-L476.
|
[39] |
Tang S, Du X, Yuan L, et al. Airway epithelial ITGB4 deficiency in early life mediates pulmonary spontaneous inflammation and enhanced allergic immune response[J]. J Cell Mol Med, 2020, 24(5): 2761-2771.
doi: 10.1111/jcmm.15000
pmid: 31970850
|
[40] |
Yuan L, Liu H, Du X, et al. Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model[J]. J Allergy Clin Immunol, 2023, 151(2): 431-446.
|
[41] |
Liu P, Li S, Tang L. Nerve growth factor: a potential therapeutic target for lung diseases[J]. Int J Mol Sci, 2021, 22(17): 9112.
|
[42] |
Ogawa H, Azuma M, Umeno A, et al. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation[J]. Allergol Int, 2022, 71(3): 395-404.
|
[43] |
王植嘉, 尚云晓. 神经激肽1受体拮抗剂对哮喘小鼠气道炎症和高反应性的影响[J]. 中国小儿急救医学, 2020, 27(2): 105-109.
|
|
Wang ZJ, Shang YX. Effect of neurokinin-1 receptor antagonists on airway inflammation and hyperresponsiveness in asthma mice[J]. Zhongguo Xiaoer Jijiu Yixue, 2020, 27(2): 105-109.
|
[44] |
Hur J, Rhee CK, Lee SY, et al. MicroRNA-21 inhibition attenuates airway inflammation and remodelling by modulating the transforming growth factor β-Smad7 pathway[J]. Korean J Intern Med, 2021, 36(3): 706-720.
doi: 10.3904/kjim.2020.132
pmid: 33601867
|
[45] |
Bradding P, Porsbjerg C, Côté A, et al. Airway hyperresponsiveness in asthma: the role of the epithelium[J]. J Allergy Clin Immunol, 2024, 153(5): 1181-1193.
doi: 10.1016/j.jaci.2024.02.011
pmid: 38395082
|
[46] |
Temann UA, Geba GP, Rankin JA, et al. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness[J]. J Exp Med, 1998, 188(7): 1307-1320.
doi: 10.1084/jem.188.7.1307
pmid: 9763610
|
[47] |
McKnight CG, Potter C, Finkelman FD. IL-4Rα expression by airway epithelium and smooth muscle accounts for nearly all airway hyperresponsiveness in murine allergic airway disease[J]. Mucosal Immunol, 2020, 13(2): 283-292.
doi: 10.1038/s41385-019-0232-7
pmid: 31745261
|