[1] |
Budinger TF, Bird MD. MRI and MRS of the human brain at magnetic fields of 14 T to 20 T: Technical feasibility, safety, and neuroscience horizons[J]. Neuroimage, 2018, 168: 509-531.
doi: S1053-8119(17)30090-3
pmid: 28179167
|
[2] |
Cao ZP, Park J, Cho ZH, et al. Numerical evaluation of image homogeneity, signal-to-noise ratio, and specific absorption rate for human brain imaging at 1.5, 3, 7, 10.5, and 14T in an 8-channel transmit/receive array[J]. J Magn Reson Imaging, 2015, 41(5): 1432-1439.
doi: 10.1002/jmri.24689
pmid: 24976608
|
[3] |
Yuen MM, Prabhat AM, Mazurek MH, et al. Portable, low-field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke[J]. Sci Adv, 2022, 8(16): eabm3952.
|
[4] |
Arnold TC, Freeman CW, Litt B, et al. Low-field MRI: Clinical promise and challenges[J]. J Magn Reson Imaging, 2023, 57(1): 25-44.
|
[5] |
Stanisz GJ, Odrobina EE, Pun J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T[J]. Magn Reson Med, 2005, 54(3): 507-512.
doi: 10.1002/mrm.20605
pmid: 16086319
|
[6] |
Escanye JM, Canet D, Robert J. Frequency-dependence of water proton longitudinal nuclear magnetic-relaxation times in mouse-tissues at 20-degrees-C[J]. Biochim Biophys Acta, 1982, 721(3): 305-311.
pmid: 7171630
|
[7] |
Morelli JN, Runge VM, Ai F, et al. An image-based approach to understanding the physics of MR artifacts[J]. Radiographics, 2011, 31(3): 849-866.
doi: 10.1148/rg.313105115
pmid: 21571661
|
[8] |
Basar B, Sonmez M, Yildirim DK, et al. Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55 T MRI system[J]. Magn Reson Imaging, 2021, 77: 14-20.
|
[9] |
Shellock FG. Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0-Tesla MR system[J]. J Magn Reson Imaging, 2002, 16(6): 721-732.
pmid: 12451586
|
[10] |
Qiu YQ, Dai K, Zhong SJ, et al. Spatiotemporal encoding MRI in a portable low-field system[J]. Magn Reson Med, 2024, 92(3): 1011-1021.
doi: 10.1002/mrm.30104
pmid: 38623991
|
[11] |
Qiu YQ, Chen S, Solomon E, et al. A new approach for multislice spatiotemporal encoding MRI in a portable low-field system[J]. Magn Reson Med, 2024: doi: 10.1002/mrm.30300.
|
[12] |
He YC, He W, Tan L, et al. Use of 2.1 MHz MRI scanner for brain imaging and its preliminary results in stroke[J]. J Magn Reson, 2020, 319: 106829.
|
[13] |
Liu YL, Leong ATL, Zhao YJ, et al. A low-cost and shielding-free ultra-low-field brain MRI scanner[J]. Nat Commun, 2021, 12(1): 7238.
doi: 10.1038/s41467-021-27317-1
pmid: 34907181
|
[14] |
Cooley CZ, McDaniel PC, Stockmann JP, et al. A portable scanner for magnetic resonance imaging of the brain[J]. Nat Biomed Eng, 2021, 5(3): 229-239.
|
[15] |
Zhao YJ, Ding Y, Lau V, et al. Whole-body magnetic resonance imaging at 0.05 Tesla[J]. Science, 2024, 384(6696): eadm7168.
|
[16] |
Ayde R, Vornehm M, Zhao YJ, et al. MRI at low field: A review of software solutions for improving SNR[J]. NMR Biomed, 2024: e5268.
|
[17] |
Srinivas SA, Cauley SF, Stockmann JP, et al. External Dynamic InTerference Estimation and Removal (EDITER) for low field MRI[J]. Magn Reson Med, 2022, 87(2): 614-628.
|
[18] |
Zhao YJ, Xiao LF, Liu YL, et al. Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding-free MRI[J]. NMR Biomed, 2024, 37(7): e4956.
|
[19] |
Zhao YJ, Xiao LF, Hu JH, et al. Robust EMI elimination for RF shielding-free MRI through deep learning direct MR signal prediction[J]. Magn Reson Med, 2024, 92(1): 112-127.
doi: 10.1002/mrm.30046
pmid: 38376455
|
[20] |
Howell BR, Styner MA, Gao W, et al. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development[J]. Neuroimage, 2019, 185: 891-905.
doi: S1053-8119(18)30259-3
pmid: 29578031
|
[21] |
Edwards AD, Rueckert D, Smith SM, et al. The Developing Human Connectome Project Neonatal Data Release[J]. Front Neurosci-Switz, 2022, 16: 886772.
|
[22] |
Deoni SCL, Bruchhage MMK, Beauchemin J, et al. Accessible pediatric neuroimaging using a low field strength MRI scanner[J]. Neuroimage, 2021, 238: 118273.
|
[23] |
Shen FX, Wolf SM, Bhavnani S, et al. Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings[J]. Neuroimage, 2021, 238: 118210.
|
[24] |
Sien ME, Robinson AL, Hu HH, et al. Feasibility of and experience using a portable MRI scanner in the neonatal intensive care unit[J]. Arch Dis Child-Fetal, 2023, 108(1): F45-F50.
|
[25] |
Heiss R, Nagel AM, Lain FB, et al. Low-field magnetic resonance imaging[J]. Invest Radiol, 2021, 56(11): 726-733.
|
[26] |
Padormo F, Cawley P, Dillon L, et al. In vivo T1 mapping of neonatal brain tissue at 64 mT[J]. Magn Reson Med, 2023, 89(3): 1016-1025.
|
[27] |
Cawley P, Padormo F, Cromb D, et al. Development of neonatal-specific sequences for portable ultralow field magnetic resonance brain imaging: a prospective, single-centre, cohort study[J]. Eclinicalmedicine, 2023, 65: 102253.
|
[28] |
Ren JY, Zhu M, Wang GH, et al. Quantification of intracranial structures volume in fetuses using 3-D volumetric MRI: Normal values at 19 to 37 weeks' gestation[J]. Front Neurosci-Switz, 2022, 16: 886083.
|
[29] |
Danzer E, Eppley E, Edgar JC, et al. Effects of 1.5-T versus 3-T magnetic resonance imaging in fetuses: is there a difference in postnatal neurodevelopmental outcome? Evaluation in a fetal population with left-sided congenital diaphragmatic hernia[J]. Pediatr Radiol, 2023, 53(6): 1085-1091.
doi: 10.1007/s00247-023-05629-2
pmid: 36823375
|
[30] |
Verdera JA, Story L, Hall M, et al. Reliability and feasibility of low-field-strength fetal MRI at 0.55 T during pregnancy[J]. Radiology, 2023, 309(1): e223050.
|
[31] |
Ponrartana S, Nguyen HN, Cui SX, et al. Low-field 0.55 T MRI evaluation of the fetus[J]. Pediatr Radiol, 2023, 53(7): 1469-1475.
doi: 10.1007/s00247-023-05604-x
pmid: 36882594
|
[32] |
Marques JP, Simonis FFJ, Webb AG. Low-field MRI: An MR physics perspective[J]. J Magn Reson Imaging, 2019, 49(6): 1528-1542.
doi: 10.1002/jmri.26637
pmid: 30637943
|
[33] |
Man CSP, Lau V, Su S, et al. Deep learning enabled fast 3D brain MRI at 0.055 tesla[J]. Sci Adv, 2023, 9(38): eadi9327.
|