临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (7): 481-487.doi: 10.12372/jcp.2022.22e0740
• 述评 • 下一篇
收稿日期:
2022-05-23
出版日期:
2022-07-15
发布日期:
2022-07-08
通讯作者:
黄敏
E-mail:huangmin@sjtu.edu.cn
基金资助:
Received:
2022-05-23
Online:
2022-07-15
Published:
2022-07-08
Contact:
HUANG Min
E-mail:huangmin@sjtu.edu.cn
摘要:
川崎病(Kawasaki disease,KD)是一种急性自身免疫性系统性血管炎,是发达国家儿童获得性心脏病的主要病因。KD最严重的后果是冠状动脉病变(coronary artery lesions,CALs),与KD的预后相关。临床研究证实静脉注射丙种球蛋白(IVIG)耐药是CALs的独立危险因素。近年来,一系列的预测模型已被开发来评估IVIG耐药的风险。然而,目前基于KD儿童人口学特征、临床表现、实验室检查及遗传特性的IVIG耐药性预测评分系统在不同民族和同一民族不同地区的人群中存在显著差异,尚未建立适用普遍人群的预测模型。
黄玉娟, 黄敏. 川崎病静脉注射丙种球蛋白无反应预测模型研究现状[J]. 临床儿科杂志, 2022, 40(7): 481-487.
HUANG Yujuan, HUANG Min. Research status of predictive model for IVIG resistance in Kawasaki disease[J]. Journal of Clinical Pediatrics, 2022, 40(7): 481-487.
[1] |
Burns JC, Glodé MP. Kawasaki syndrome[J]. Lancet, 2004, 364(9433): 533-544.
pmid: 15302199 |
[2] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the american heart association[J]. Circulation, 2017, 135(17): e927-e999. |
[3] |
Kobayashi T, Ayusawa M, Suzuki H, et al. Revision of diagnostic guidelines for Kawasaki disease (6th revised edition)[J]. Pediatr Int, 2020, 62(10): 1135-1138.
doi: 10.1111/ped.14326 |
[4] |
Kim GB, Park S, Eun LY, et al. Epidemiology and clinical features of Kawasaki Disease in South Korea, 2012-2014 [J]. Pediatr Infect Dis J, 2017, 36(5): 482-485.
doi: 10.1097/INF.0000000000001474 |
[5] |
Lue HC, Chen LR, Lin MT, et al. Estimation of the incidence of Kawasaki disease in Taiwan. A comparison of two data sources: nationwide hospital survey and national health insurance claims[J]. Pediatr Neonatol, 2014, 55(2): 97-100.
doi: 10.1016/j.pedneo.2013.05.011 |
[6] |
Makino N, Nakamura Y, Yashiro M, et al. Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey[J]. J Epidemiol, 2015, 25(3): 239-245.
doi: 10.2188/jea.JE20140089 |
[7] |
Huang MY, Gupta-Malhotra M, Huang JJ, et al. Acute-phase reactants and a supplemental diagnostic aid for Kawasaki disease[J]. Pediatr Cardiol, 2010, 31(8): 1209-1213.
doi: 10.1007/s00246-010-9801-y |
[8] |
Li X, Chen Y, Tang Y, et al. Predictors of intravenous immune globulin resistant Kawasaki disease in children: a meta-analysis of 4442 cases[J]. Eur J Pediatr, 2018, 177(8): 1279-1292.
doi: 10.1007/s00431-018-3182-2 |
[9] |
Park HM, Lee DW, Hyun MC, et al. Predictors of nonresponse to intravenous immunoglobulin therapy in Kawasaki disease[J]. Korean J Pediatr, 2013, 56(2): 75-79.
doi: 10.3345/kjp.2013.56.2.75 pmid: 23482814 |
[10] |
Hu P, Jiang GM, Wu Y, et al. TNF-α is superior to conventional inflammatory mediators in forecasting IVIG nonresponse and coronary arteritis in Chinese children with Kawasaki disease[J]. Clin Chim Acta, 2017, 471: 76-80.
doi: 10.1016/j.cca.2017.05.019 |
[11] |
Nakamura N, Muto T, Masuda Y, et al. Procalcitonin as a biomarker of unresponsiveness to intravenous immunoglobulin for Kawasaki disease[J]. Pediatr Infect Dis J, 2020, 39(9): 857-861.
doi: 10.1097/INF.0000000000002716 pmid: 32433223 |
[12] |
Wu G, Yue P, Ma F, et al. Neutrophil-to-lymphocyte ratio as a biomarker for predicting the intravenous immunoglobulin resistant Kawasaki disease[J]. Medicine (Baltimore), 2020, 99(6): e18535.
doi: 10.1097/MD.0000000000018535 |
[13] |
Domingnez SR, Martin B, Heizer H, et al. Procal-citonin (PCT) and Kawasaki disease:does pct correlate with IVIG resistant disease,admission to the intensive care unit or development of coronary artery lesions?[J]. J Pediatric Infect Dis Soc, 2016, 5(3): 297-302.
doi: 10.1093/jpids/piv019 |
[14] |
Kuo HC, Liang CD, Wang CL, et al. Serum albumin level predicts initial intravenous immunoglobulin treatment failure in Kawasaki disease[J]. Acta Paediatr, 2010, 99(10): 1578-1583.
doi: 10.1111/j.1651-2227.2010.01875.x |
[15] |
Masuzawa Y, Mori M, Hara T, et al. Elevated D-dimer level is a risk factor for coronary artery lesions accompanying intravenous immunoglobulin-unresponsive Kawasaki disease[J]. Ther Apher Dial, 2015, 19(2): 171-177.
doi: 10.1111/1744-9987.12235 |
[16] |
Teraguchi M, Ogino H, Yoshimura K, et al. Steroid pulse therapy for children with intravenous immunoglobulin therapy-resistant Kawasaki disease: a prospective study[J]. Pediatr Cardiol, 2013, 34(4): 959-963.
doi: 10.1007/s00246-012-0589-9 pmid: 23184018 |
[17] |
Kaneko K, Yoshimura K, Ohashi A, et al. Prediction of the risk of coronaryarterial lesions in Kawasaki disease by brain natriuretic peptide[J]. Pediatr Cardiol, 2011, 32(8): 1106-1109.
doi: 10.1007/s00246-011-9986-8 |
[18] |
Wang T, Liu G, Lin H. A machine learning approach to predict intravenous immunoglobulin resistance in Kawasaki disease patients: a study based on a Southeast China population[J]. PLoS One, 2020, 15(8): e0237321.
doi: 10.1371/journal.pone.0237321 |
[19] |
Kuniyoshi Y, Tokutake H, Takahashi N, et al. Comparison of machine learning models for prediction of initial intravenous immunoglobulin resistance in children with Kawasaki disease[J]. Front Pediatr, 2020, 8: 570834.
doi: 10.3389/fped.2020.570834 |
[20] |
Kobayashi T, Inoue Y, Takeuchi K, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease[J]. Circulation, 2006, 113(22): 2606-2612.
pmid: 16735679 |
[21] |
Egami K, Muta H, Ishii M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease[J]. J Pediatr, 2006, 149(2): 237-240.
doi: 10.1016/j.jpeds.2006.03.050 |
[22] |
Sano T, Kurotobi S, Matsuzaki K, et al. Prediction of non-responsiveness to standard high dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment[J]. Eur J Pediatr, 2007, 166(2):131-137.
doi: 10.1007/s00431-006-0223-z |
[23] |
Sato S, Kawashima H, Kashiwagi Y, et al. Inflammatory cytokines as predictors of resistance to intravenous immunoglobulin therapy in Kawasaki disease patients[J]. Int J Rheum Dis, 2013, 16(2): 168-172.
doi: 10.1111/1756-185X.12082 |
[24] |
Kawanlura Y, Takeshita S, Kanai T, et al. The combined usefulness of the neutrophil-to-lymphocyte and platelet lymphocyte ratios in predicting intravenous immunoglobulin resistance with Kawasaki disease[J]. J Pediatr, 2016, 178: 281-284.
doi: 10.1016/j.jpeds.2016.07.035 |
[25] |
Takeshita S, Kanai T, Kawamura Y, et al. A comparison of the predictive validity of the combination of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio and other risk scoring systems for intravenous immunoglobulin-resistance in Kawasaki disease[J]. PLoS One, 2017, 12(5): e0176957.
doi: 10.1371/journal.pone.0176957 |
[26] |
Tremoulet AH, Best BM, Song S, et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease[J]. J Pediatr, 2008, 153(1): 117-121.
doi: 10.1016/j.jpeds.2007.12.021 |
[27] |
Fu PP, Du ZD, Pan YS. Novel predictors of intravenous immunoglobulin resistance in Chinese children with Kawasaki disease[J]. Pediatr Infect Dis J, 2013, 32(8): e319-323.
doi: 10.1097/INF.0b013e31828e887f |
[28] |
Song R, Yao W, Li X. Efficacy of four scoring systems in predicting intravenous immunoglobulin resistance in children with Kawasaki disease in a children's hospital in Beijing, North China[J]. J Pediatr, 2017, 184: 120-124.
doi: 10.1016/j.jpeds.2016.12.018 |
[29] |
Yang S, Song R, Zhang J, et al. Predictive tool for intravenous immunoglobulin resistance of Kawasaki disease in Beijing[J]. Arch Dis Child, 2019, 104(3):262-267.
doi: 10.1136/archdischild-2017-314512 |
[30] |
Tang Y, Yan W, Sun L, et al. Prediction of intravenous simmuno globulin resistance in Kawasaki disease in an east China population[J]. Clin Rheumatol, 2016, 35(11): 2771-2776.
doi: 10.1007/s10067-016-3370-2 |
[31] |
Qian W, Tang Y, Yan W, et al. A comparison of efficacy of six prediction models for intravenous immune globulin resistance in Kawasaki disease[J]. Ital J Pediatr, 2018, 44(1): 33.
doi: 10.1186/s13052-018-0475-z |
[32] |
Hua W, Sun Y, Wang Y, et al. A new model to predict intravenous immunoglobin-resistant Kawasaki disease[J]. Oncotarget, 2017, 8(46): 80722-80729.
doi: 10.18632/oncotarget.21083 pmid: 29113339 |
[33] |
Kong WX, Ma FY, Fu SL, et al. Biomarkers of intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease[J]. World J Pediatr, 2019, 15(2):168-175.
doi: 10.1007/s12519-019-00234-6 |
[34] | 朱丹颖, 宋思瑞, 黄敏, 等. 川崎病丙种球蛋白无反应评分模型的建立与研究[J]. 国际儿科学杂志, 2018, 45(7): 532-536. |
[35] | 陈丽琴, 宋思瑞, 黄敏, 等. 川崎病丙种球蛋白无反应型易感基因研究[J]. 临床儿科杂志, 2019, 37(10): 721-726. |
[36] |
Chen LQ, Song SR, Huang M, et al. Prediction for intravenous immunoglobulin resistance combining genetic risk loci identified from next generation sequencing and laboratory data in Kawasaki disease[J]. Front Pediatr, 2020, 8: 462367.
doi: 10.3389/fped.2020.462367 |
[37] |
Wu S, Long Y, Chen S, et al. A new scoring system for prediction of intravenous immunoglobulin resistance of Kawasaki disease in infants under 1-year old[J]. Front Pediatr, 2019, 7: 514.
doi: 10.3389/fped.2019.00514 |
[38] |
Wu S, Liao Y, Sun Y, et al. Prediction of intravenous immune globulin resistance in Kawasaki disease in children[J]. World J Pediatr, 2020, 16(6): 607-613.
doi: 10.1007/s12519-020-00348-2 |
[39] |
Tan XH, Zhang XW, Wang XY, et al. A new model for predicting intravenous immunoglobin-resistant Kawasaki disease in Chongqing: a retrospective study on 5277 patients[J]. Sci Rep, 2019, 9(1): 1722.
doi: 10.1038/s41598-019-39330-y |
[40] | 谢丽萍, 黄国英, 刘芳, 等. 对川崎病患儿静脉注射丙种球蛋白耐药临床预测模型建立的质疑[J]. 中国循证儿科杂志, 2019, 14(3): 169-175. |
[41] |
Bar-Meir M, Kalisky I, Schwartz A, et al. Prediction of resistance to intravenous immunoglobulin in children with Kawasaki disease[J]. J Pediatric Infect Dis Soc, 2018, 7: 25-29.
doi: 10.1093/jpids/piw075 pmid: 28062554 |
[42] |
Grignani R, Rajgor DD, Leow YG, et al. A novel model forpredicting non-responsiveness to intravenous immunoglobulins in Kawasaki disease: the Singapore experience[J]. J Paediatr Child Health, 2019, 55(8): 962-967.
doi: 10.1111/jpc.14329 |
[43] |
Chen L, Song S, Ning Q, et al. Prediction for intravenous immunoglobulin resistance combining genetic risk loci identified from next generation sequencing and laboratory data in kawasaki disease[J]. Front Pediatr. 2020, 8: 462367.
doi: 10.3389/fped.2020.462367 |
[44] |
Kuo HC, Wong HS, Chang WP, et al. Prediction for intravenous immunoglobulin resistance by using weighted genetic risk score identified from genome-wide association study in Kawasaki disease[J]. Circ Cardiovasc Genet, 2017, 10(5): e001625.
doi: 10.1161/CIRCGENETICS.116.001625 |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[6] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[7] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[8] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[9] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[10] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[11] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
[12] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[13] | 邬晓玲, 吕铁伟. 儿童特发性左室室性心动过速临床分析[J]. 临床儿科杂志, 2023, 41(8): 599-603. |
[14] | 孙智才, 刘玉玲, 李小琳, 潘晓芬. 儿童原发性肾病综合征合并肾上腺危象15例临床分析[J]. 临床儿科杂志, 2023, 41(8): 610-612. |
[15] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
|