临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (11): 813-818.doi: 10.12372/jcp.2022.22e1048
王歆琼, 许春娣
收稿日期:
2022-07-28
出版日期:
2022-11-15
发布日期:
2022-11-10
作者简介:
青年编委 王歆琼,博士,ORCID:0000-0003-0057-3653,医学博士,上海交通大学医学院附属瑞金医院儿内科副主任医师。兼任中华医学会儿科分会消化学组青年委员、中国妇幼保健协会妇幼微创专业委员会小儿消化胃肠学组青年委员、《临床儿科杂志》青年编委。主要从事儿童消化系统疾病的诊治和内镜操作以及相关疾病的基础研究工作。2017—2019年曾于美国犹他大学风湿免疫实验室访学。主持国家自然科学基金青年项目1项,参与国家级及省部级课题多项,国内外学术期刊上发表论文20余篇。
基金资助:
WANG Xinqiong, XU Chundi
Received:
2022-07-28
Published:
2022-11-15
Online:
2022-11-10
摘要:
我国儿童炎症性肠病(inflammatory bowel disease,IBD)的发病率不断上升,精准治疗可提高患儿的临床缓解及黏膜愈合率,提高儿童IBD的诊治水平。儿童IBD的精准治疗的发展主要基于对疾病发生发展认识的不断深入。生物制剂应用的不断优化可提高患儿的治疗效果,减轻经济负担。随着基因组学、转录组学、肠道微生态学及代谢组学等学科的发展及人工智能算法的协助,新的生物标志物不断被研究发现和应用。通过对儿童IBD精准化治疗的推动,IBD诊治策略将有新的改革和发展。
王歆琼, 许春娣. 儿童炎症性肠病的精准治疗[J]. 临床儿科杂志, 2022, 40(11): 813-818.
WANG Xinqiong, XU Chundi. Precision treatment in pediatric inflammatory bowel disease[J]. Journal of Clinical Pediatrics, 2022, 40(11): 813-818.
[1] |
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.
doi: 10.1053/j.gastro.2021.12.282 pmid: 34995526 |
[2] |
Wang XQ, Zhang Y, Xu CD, et al. Inflammatory bowel disease in Chinese children: a multicenter analysis over a decade from Shanghai[J]. Inflamm Bowel Dis, 2013, 19(2): 423-428.
doi: 10.1097/MIB.0b013e318286f9f2 |
[3] | 中华医学会儿科学分会消化学组,中华医学会儿科学分会临床营养学组. 儿童炎症性肠病诊断和治疗专家共识[J]. 中华儿科杂志, 2019, 57(7): 501-507. |
[4] |
Solberg IC, Vatn MH, Høie O, et al. Clinical course in Crohn's disease: results of a Norwegian population-based ten-year follow-up study[J]. Clin Gastroenterol Hepatol, 2007, 5(12): 1430-1438.
doi: 10.1016/j.cgh.2007.09.002 |
[5] |
Verstockt B, Noor NM, Marigorta UM, et al. Results of the seventh scientific workshop of ECCO: precision medicine in IBD-disease outcome and response to therapy[J]. J Crohns Colitis, 2021, 15(9): 1431-1442.
doi: 10.1093/ecco-jcc/jjab050 pmid: 33730756 |
[6] |
van Rheenen PF, Aloi M, Assa A, et al. The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update[J]. J Crohns Colitis, 2020, 7: 1-24.
doi: 10.1016/j.crohns.2012.09.005 |
[7] |
Siegel CA, Horton H, Siegel LS, et al. A validated web-based tool to display individualised Crohn's disease predicted outcomes based on clinical, serologic and genetic variables[J]. Aliment Pharmacol Ther, 2016, 43(2): 262-271.
doi: 10.1111/apt.13460 |
[8] |
Billiet T, Papamichael K, de Bruyn M, et al. A matrix-based model predicts primary response to infliximab in Crohn's disease[J]. J Crohns Colitis, 2015, 9(12): 1120-1126.
doi: 10.1093/ecco-jcc/jjv156 pmid: 26351386 |
[9] |
Singh N, Rabizadeh S, Jossen J, et al. Multi-center experience of vedolizumab effectiveness in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2016, 22(9): 2121-2126.
doi: 10.1097/MIB.0000000000000865 pmid: 27542130 |
[10] |
Fang S, Song Y, Zhang C, et al. Efficacy and safety of vedolizumab for pediatrics with inflammatory bowel disease: a systematic review[J]. BMC Pediatr, 2022, 22(1): 175.
doi: 10.1186/s12887-022-03229-x pmid: 35379216 |
[11] |
Dulai PS, Boland BS, Singh S, et al. Development and validation of a scoring system to predict outcomes of vedolizumab treatment in patients with Crohn's disease[J]. Gastroenterology, 2018, 155(3): 687-695.
doi: 10.1053/j.gastro.2018.05.039 |
[12] |
Dulai PS, Singh S, Vande Casteele N, et al. Development and validation of clinical scoring tool to predict outcomes of treatment with vedolizumab in patients with ulcerative colitis[J]. Clin Gastroenterol Hepatol, 2020, 18(13): 2952-2961.
doi: 10.1016/j.cgh.2020.02.010 |
[13] |
Kakiuchi T, Yoshiura M. Japanese pediatric patient with moderately active ulcerative colitis successfully treated with ustekinumab: a case report[J]. Medicine (Baltimore), 2022, 101(7): e28873.
doi: 10.1097/MD.0000000000028873 |
[14] |
Fujita Y, Sugaya T, Tanaka T, et al. Ustekinumab as the first biological agent for Crohn's disease in a 10-year-old girl[J]. Tohoku J Exp Med, 2021, 255(1): 57-60.
doi: 10.1620/tjem.255.57 pmid: 34588346 |
[15] |
Dolinger MT, Spencer EA, Lai J, et al. Dual biologic and small molecule therapy for the treatment of refractory pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2021, 27(8): 1210-1214.
doi: 10.1093/ibd/izaa277 pmid: 33125058 |
[16] | 许旭, 肖园, 邱文娟, 等. 糖原累积病Ⅰb型并发克罗恩病一例[J]. 中华儿科杂志, 2017, 55(2): 144-145. |
[17] |
Papamichael K, Chachu KA, Vajravelu RK, et al. Improved long-term outcomes of patients with inflammatory bowel disease receiving proactive compared with reactive monitoring of serum concentrations of infliximab[J]. Clin Gastroenterol Hepatol, 2017, 15(10): 1580-1588.
doi: 10.1016/j.cgh.2017.03.031 |
[18] |
Vande Casteele N, Ferrante M, Van Assche G, et al. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease[J]. Gastroenterology, 2015, 148(7): 1320-1329.
doi: 10.1053/j.gastro.2015.02.031 pmid: 25724455 |
[19] | Nguyen NH, Solitano V, Vuyyuru SK, et al. Proactive therapeutic drug monitoring versus conventional management for inflammatory bowel diseases: a systematic review and meta-analysis[J]. Gastroenterology, 2022, 24(22): 670-679. |
[20] |
Alsoud D, Vermeire S, Verstockt B. Monitoring vedolizumab and ustekinumab drug levels in patients with inflammatory bowel disease: hype or hope?[J]. Curr Opin Pharmacol, 2020, 55: 17-30.
doi: 10.1016/j.coph.2020.09.002 pmid: 33039940 |
[21] |
Colombel JF, Adedokun OJ, Gasink C, et al. Combination therapy with infliximab and azathioprine improves infliximab pharmacokinetic features and efficacy: a post hoc analysis[J]. Clin Gastroenterol Hepatol, 2019, 17(8): 1525-1532.
doi: 10.1016/j.cgh.2018.09.033 |
[22] |
Warner B, Johnston E, Arenas-Hernandez M, et al. A practical guide to thiopurine prescribing and monitoring in IBD[J]. Frontline Gastroenterol, 2018, 9(1): 10-15.
doi: 10.1136/flgastro-2016-100738 |
[23] | Bak-Drabik K, Adamczyk P, Duda-Wronska J, et al. Usefulness of measuring thiopurine metabolites in children with inflammatory bowel disease and autoimmunological hepatitis, treated with azathioprine[J]. Gastroenterol Res Pract, 2021, 2021: 9970019. |
[24] |
Simsek M, Deben DS, Horjus CS, et al. Sustained effectiveness, safety and therapeutic drug monitoring of tioguanine in a cohort of 274 IBD patients intolerant for conventional therapies[J]. Aliment Pharmacol Ther, 2019, 50(1): 54-65.
doi: 10.1111/apt.15280 |
[25] |
Moriyama T, Nishii R, Perez-Andreu V, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity[J]. Nat Genet, 2016, 48(4): 367-373.
doi: 10.1038/ng.3508 pmid: 26878724 |
[26] |
Heap GA, Weedon MN, Bewshea CM, et al. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants[J]. Nat Genet, 2014, 46(10): 1131-1134.
doi: 10.1038/ng.3093 pmid: 25217962 |
[27] |
Verstockt B, Parkes M, Lee JC. How do we predict a patient's disease course and whether they will respond to specific treatments?[J]. Gastroenterology, 2022, 162(5): 1383-1395.
doi: 10.1053/j.gastro.2021.12.245 |
[28] |
Colombel JF, Panaccione R, Bossuyt P, et al. Effect of tight control management on Crohn's disease (CALM): a multicentre, randomised, controlled phase 3 trial[J]. Lancet, 2017, 390(10114): 2779-2789.
doi: 10.1016/S0140-6736(17)32641-7 |
[29] |
West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease[J]. Nat Med, 2017, 23(5):579-589.
doi: 10.1038/nm.4307 pmid: 28368383 |
[30] |
Kugathasan S, Denson LA, Walters TD, et al. Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study[J]. Lancet, 2017, 389(10080): 1710-1718.
doi: S0140-6736(17)30317-3 pmid: 28259484 |
[31] |
Martin JC, Chang C, Boschetti G, et al. Single-cell analysis of Crohn's disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy[J]. Cell, 2019, 178(6): 1493-1508.
doi: S0092-8674(19)30896-7 pmid: 31474370 |
[32] |
Nayar S, Morrison JK, Giri M, et al. A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease[J]. Nature, 2021, 593(7858): 275-281.
doi: 10.1038/s41586-021-03484-5 |
[33] |
Morilla I, Uzzan M, Laharie D, et al. Colonic MicroRNA profiles, identified by a deep learning algorithm, that predict responses to therapy of patients with acute severe ulcerative colitis[J]. Clin Gastroenterol Hepatol, 2019, 17(5): 905-913.
doi: 10.1016/j.cgh.2018.08.068 |
[34] |
Wang X, Xiao Y, Xu X, et al. Characteristics of fecal microbiota and machine learning strategy for fecal invasive biomarkers in pediatric inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2021, 11: 711884.
doi: 10.3389/fcimb.2021.711884 |
[35] |
Wang Y, Gao X, Ghozlane A, et al. Characteristics of faecal microbiota in paediatric Crohn's disease and their dynamic changes during infliximab therapy[J]. J Crohns Colitis, 2018, 12(3): 337-346.
doi: 10.1093/ecco-jcc/jjx153 pmid: 29194468 |
[36] |
Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease[J]. Int J Med Microbiol, 2008, 298(5-6): 463-472.
pmid: 17897884 |
[37] |
Borren NZ, Plichta D, Joshi AD, et al. Multi-"-Omics" profiling in patients with quiescent inflammatory bowel disease identifies biomarkers predicting relapse[J]. Inflamm Bowel Dis, 2020, 26(10): 1524-1532.
doi: 10.1093/ibd/izaa183 pmid: 32766830 |
[1] | 罗明静, 余嘉明, 王晓东, 张小玲, 余阅, 张瑜, 文飞球, 刘四喜. 424例地中海贫血患儿异基因造血干细胞移植后继发侵袭性真菌病临床分析[J]. 临床儿科杂志, 2025, 43(1): 21-28. |
[2] | 刘冬霞, 金蓉, 林荣军. 儿童重症难治性肺炎支原体肺炎并发闭塞性支气管炎危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 29-34. |
[3] | 钟瑾虹, 王灿, 陈芳. 婴幼儿纤维支气管镜诊疗中镇静技术的研究进展[J]. 临床儿科杂志, 2025, 43(1): 50-55. |
[4] | 蒋卫芹, 王静, 程安娜, 陈婷婷, 黄玉娟. 儿童热性惊厥急性期惊厥复发的危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 8-13. |
[5] | 邱琇, 韦冬梅, 林珊珊, 夏慧敏, 周文浩. 广州出生队列研究的理念与实践[J]. 临床儿科杂志, 2024, 42(9): 747-752. |
[6] | 陈倩, 田英, 孙锟, 张军. 关注环境、立足疾病的大型出生队列研究平台[J]. 临床儿科杂志, 2024, 42(9): 753-757. |
[7] | 范建霞. 健康生命轨迹计划缘起与发展:社区-家庭-母婴多层面儿童超重与肥胖干预研究队列[J]. 临床儿科杂志, 2024, 42(9): 768-773. |
[8] | 姜涛, 李双杰, 唐莲, 欧阳文献. 慢性乙型肝炎患儿外周血MAIT细胞的免疫生物学特性[J]. 临床儿科杂志, 2024, 42(9): 787-790. |
[9] | 周洁, 刘克强, 王金玲, 王莹. MYH11延长突变导致巨膀胱-小结肠-肠蠕动不良综合征1例报告及文献复习[J]. 临床儿科杂志, 2024, 42(9): 798-804. |
[10] | 褚思嘉, 汤继宏. 儿童急性淋巴细胞白血病及其治疗所伴发的中枢神经系统损伤研究进展[J]. 临床儿科杂志, 2024, 42(9): 811-816. |
[11] | 丁亚平, 夏姗姗, 张晨美. 《2023年国际儿童肾脏营养工作组临床实践建议:儿童急性肾损伤的营养管理》解读[J]. 临床儿科杂志, 2024, 42(8): 667-672. |
[12] | 李怡蓉, 李惠萍, 高靖瑜, 肖玉华, 陈小敏, 卢艳玲, 赵娜娜, 冯晓勤. FLAG-IDA诱导化疗方案中不同剂量阿糖胞苷治疗儿童急性髓系白血病疗效比较[J]. 临床儿科杂志, 2024, 42(8): 673-677. |
[13] | 黄博, 董艳迎, 宋琳岚. 儿童传染性单核细胞增多症348例临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 678-683. |
[14] | 王丹, 邵静波, 李红, 张娜, 朱嘉莳, 付盼, 王真. 儿童血液系统恶性肿瘤并发肿瘤溶解综合征38例临床特点分析[J]. 临床儿科杂志, 2024, 42(8): 684-690. |
[15] | 马岩, 韦性娇, 白华, 张艳, 田新敏, Aqsa Ahmad, 梁丽俊. 西部地区某三甲医院儿童慢性肾脏病5期病因构成及临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 697-703. |
|