临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (11): 875-880.doi: 10.12372/jcp.2022.21e1762
• 继续医学教育 • 上一篇
收稿日期:
2021-12-24
出版日期:
2022-11-15
发布日期:
2022-11-10
通讯作者:
赵瑞秋
E-mail:zrq0907@yeah.net
Received:
2021-12-24
Online:
2022-11-15
Published:
2022-11-10
Contact:
ZHAO Ruiqiu
E-mail:zrq0907@yeah.net
摘要:
败血症是导致新生儿死亡的重要原因。无乳链球菌是新生儿败血症的常见病原。近年来,在新生儿无乳链球菌败血症的诊疗及预防方面取得了一定的进展。西方国家相继出台、更新了相应临床指南,促进了新生儿无乳链球菌败血症的临床诊治水平的进步。文章就国内外新生儿无乳链球菌败血症临床相关研究进展进行简要介绍。
陈标, 赵瑞秋. 新生儿无乳链球菌败血症临床相关研究进展[J]. 临床儿科杂志, 2022, 40(11): 875-880.
CHEN Biao, ZHAO Ruiqiu. Clinical research progress on neonatal sepsis induced by Streptococcus agalactiae[J]. Journal of Clinical Pediatrics, 2022, 40(11): 875-880.
[1] |
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3): 223-230.
doi: 10.1016/S2213-2600(18)30063-8 pmid: 29508706 |
[2] | Raabe VN, Shane AL. Group B Streptococcus (Streptococcus Agalactiae)[J]. Microbiol Spectr, 2019, 7(2): 10.1128/mierobiolspec. GPP3-007-2018.. |
[3] |
Madrid L, Seale AC, Kohli-Lynch M, et al. Infant group B streptococcal disease incidence and serotypes worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): s160-s172.
doi: 10.1093/cid/cix656 |
[4] |
Nanduri SA, Petit S, Smelser C, et al. Epidemiology of invasive early-onset and late-onset group B Streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance[J]. JAMA Pediatr, 2019, 173(3): 224-233.
doi: 10.1001/jamapediatrics.2018.4826 |
[5] |
Teatero S, Ferrieri P, Fittipaldi N. Serotype IV sequence type 468 group B Streptococcus neonatal invasive disease, minnesota, USA[J]. Emerg Infect Dis, 2016, 22(11): 1937-1940.
doi: 10.3201/eid2211.152031 pmid: 27767922 |
[6] |
Guan X, Mu X, Ji W, et al. Epidemiology of invasive group B Streptococcal disease in infants from urban area of South China, 2011-2014 [J]. BMC Infect Dis, 2018, 18(1): 14.
doi: 10.1186/s12879-017-2811-0 |
[7] |
Seale AC, Bianchi-Jassir F, Russell NJ, et al. Estimates of the burden of Group B Streptococcal disease worldwide for pregnant women, stillbirths, and children[J]. Clin Infect Dis, 2017, 65(suppl_2): s200-s219.
doi: 10.1093/cid/cix664 |
[8] |
Ji W, Liu H, Madhi SA, et al. Clinical and molecular epidemiology of invasive group B Streptococcus disease among infants, China[J]. Emerg Infect Dis, 2019, 25(11): 2021-2030.
doi: 10.3201/eid2511.181647 |
[9] |
Ding Y, Wang Y, Hsia Y, et al. Systematic review and meta-analyses of incidence for group B Streptococcus disease in infants and antimicrobial resistance, China[J]. Emerg Infect Dis, 2020, 26(11): 2651-2659.
doi: 10.3201/eid2611.181414 |
[10] |
Braye K, Foureur M, de Waal K, et al. Epidemiology of neonatal early-onset sepsis in a geographically diverse Australian health district 2006-2016[J]. PLoS One, 2019, 14(4): e0214298.
doi: 10.1371/journal.pone.0214298 |
[11] |
Kim SJ, Kim GE, Park JH, et al. Clinical features and prognostic factors of early-onset sepsis: a 7.5-year experience in one neonatal intensive care unit[J]. Korean J Pediatr, 2019, 62(1): 36-41.
doi: 10.3345/kjp.2018.06807 pmid: 30304900 |
[12] |
Russell NJ, Seale AC, O'Sullivan C, et al. Risk of early-onset neonatal group B Streptococcal disease with maternal colonization worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): s152-s159.
doi: 10.1093/cid/cix655 |
[13] | Queensland Clinical Guidelines. Early onset group B Streptococcal disease. Guideline No. MN22.20-V6-R27.Queensland Health, 2022, [2021-12-24] http://www.health.qld.gov.au/qcg |
[14] | Zhou P, Zhou Y, Liu B, et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis[J]. mSphere, 2020, 5(1). |
[15] |
Cools P, van de Wijgert J, Jespers V, et al. Role of HIV exposure and infection in relation to neonatal GBS disease and rectovaginal GBS carriage: a systematic review and meta-analysis[J]. Sci Rep, 2017, 7(1): 13820.
doi: 10.1038/s41598-017-13218-1 pmid: 29062060 |
[16] |
Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet, 2017, 390(10104): 1770-1780.
doi: S0140-6736(17)31002-4 pmid: 28434651 |
[17] |
Li X, Ding X, Shi P, et al. Clinical features and antimicrobial susceptibility profiles of culture-proven neonatal sepsis in a tertiary children's hospital, 2013 to 2017[J]. Medicine (Baltimore), 2019, 98(12): e14686.
doi: 10.1097/MD.0000000000014686 |
[18] |
Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity[J]. J Leukoc Biol, 2018, 103(5): 839-853.
doi: 10.1002/JLB.1RU1117-428R |
[19] |
Kohli-Lynch M, Russell NJ, Seale AC, et al. Neuro-developmental impairment in children after group B Streptococcal disease worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): S190-s199.
doi: 10.1093/cid/cix663 |
[20] |
Rosa-Fraile M, Spellerberg B. Reliable detection of group B Streptococcus in the clinical laboratory[J]. J Clin Microbiol, 2017, 55(9): 2590-2598.
doi: 10.1128/JCM.00582-17 pmid: 28659318 |
[21] |
Guo D, Xi Y, Wang S, et al. Is a positive Christie-Atkinson-Munch-Peterson (CAMP) test sensitive enough for the identification of Streptococcus agalactiae?[J]. BMC Infect Dis, 2019, 19(1): 7.
doi: 10.1186/s12879-018-3561-3 |
[22] |
Dalai R, Dutta S, Pal A, et al. Is lumbar puncture avoidable in low-risk neonates with suspected sepsis?[J]. Am J Perinatol, 2022, 39(1): 99-105.
doi: 10.1055/s-0040-1714397 |
[23] | Pammi M, Flores A, Versalovic J, et al. Molecular assays for the diagnosis of sepsis in neonates[J]. Cochrane Database Syst Rev, 2017, 2(2): Cd011926. |
[24] |
Oeser C, Pond M, Butcher P, et al. PCR for the detection of pathogens in neonatal early onset sepsis[J]. PLoS One, 2020, 15(1): e0226817.
doi: 10.1371/journal.pone.0226817 |
[25] |
Han MY, Xie C, Huang QQ, et al. Evaluation of Xpert GBS assay and Xpert GBS LB assay for detection of streptococcus agalactiae[J]. Ann Clin Microbiol Antimicrob, 2021, 20(1): 62.
doi: 10.1186/s12941-021-00461-8 |
[26] |
El Shahaway AA, El Maghraby HM, Mohammed HA, et al. Diagnostic performance of direct latex agglutination, post-enrichment latex agglutination and culture methods in screening of group B Streptococci in late pregnancy: a comparative study[J]. Infect Drug Resist, 2019, 12: 2583-2588.
doi: 10.2147/IDR.S203543 pmid: 31692504 |
[27] | Hincu MA, Zonda GI, Stanciu GD, et al. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis[J]. Children (Basel), 2020, 7(12). |
[28] |
Aydin M, Barut S, Akbulut HH, et al. Application of flow cytometry in the early diagnosis of neonatal sepsis[J]. Ann Clin Lab Sci, 2017, 47(2): 184-190.
pmid: 28442521 |
[29] |
Nakstad B, Sonerud T, Solevag AL. Early detection of neonatal group B Streptococcus sepsis and the possible diagnostic utility of IL-6, IL-8, and CD11b in a human umbilical cord blood in vitro model[J]. Infect Drug Resist, 2016, 9: 171-179.
doi: 10.2147/IDR.S106181 pmid: 27468243 |
[30] | Hoover LE. Group B Streptococcus disease: AAP Updates Guidelines for the management of at-risk infants[J]. Am Fam Physician, 2020, 101(6): 378-380. |
[31] | Metcalf BJ, Chochua S, Gertz RE, et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA[J]. Clin Microbiol Infect, 2017, 23(8): 574. e577-574.e514. |
[32] |
Plainvert C, Hays C, Touak G, et al. Multidrug-resistant hypervirulent group B Streptococcus in neonatal invasive infections, France, 2007-2019 [J]. Emerg Infect Dis, 2020, 26(11): 2721-2724.
doi: 10.3201/eid2611.201669 pmid: 33079049 |
[33] | Campisi E, Rosini R, Ji W, et al. Genomic analysis reveals multi-drug resistance clusters in group B Streptococcus CC17 hypervirulent isolates causing neonatal invasive disease in Southern Mainland China[J]. Front Microbiol, 2016, 7: 1265. |
[34] |
Martins ER, Pedroso-Roussado C, Melo-Cristino J, et al. Streptococcus agalactiae causing neonatal infections in Portugal (2005-2015): diversification and emergence of a CC17/PI-2b multidrug resistant sublineage [J]. Front Microbiol, 2017, 8: 499.
doi: 10.3389/fmicb.2017.00499 pmid: 28400757 |
[35] |
Lund SJ, Patras KA, Kimmey JM, et al. Developmental immaturity of siglec receptor expression on neonatal alveolar macrophages predisposes to severe group B Streptococcal infection[J]. iScience, 2020, 23(6): 101207.
doi: 10.1016/j.isci.2020.101207 |
[36] |
Hansen R, Gibson S, De Paiva Alves E, et al. Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin[J]. Sci Rep, 2018, 8(1): 6470.
doi: 10.1038/s41598-018-24811-3 |
[37] | 吴晓彬, 余加林, 李雪梅. 岩藻糖基化人乳低聚糖在新生儿无乳链球菌肺炎治疗中的作用[J]. 中国微生态学杂志, 2020, 32(3): 264-268. |
[38] |
Schüller SS, Kramer BW, Villamor E, et al. Immunomodulation to prevent or treat neonatal sepsis: past, present, and future[J]. Front Pediatr, 2018, 6: 199.
doi: 10.3389/fped.2018.00199 pmid: 30073156 |
[39] | Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates[J]. Cochrane Database Syst Rev, 2020, 1(1): Cd001239. |
[40] |
Lee J, Naiduvaje K, Chew KL, et al. Preventing early-onset group B Streptococcal sepsis: clinical risk factor-based screening or culture-based screening?[J]. Singapore Med J, 2021, 62(1): 34-38.
doi: 10.11622/smedj.2019155 |
[41] | 中华医学会围产医学分会,中华医学会妇产科学分会产科学组. 预防围产期B族链球菌病(中国)专家共识[J]. 中华围产医学杂志, 2021, 24(8): 561-566. |
[42] |
Vekemans J, Moorthy V, Friede M, et al. Maternal immunization against group B Streptococcus: World Health Organization research and development technological roadmap and preferred product characteristics[J]. Vaccine, 2019, 37(50): 7391-7393.
doi: S0264-410X(17)31359-2 pmid: 29398277 |
[43] |
Madhi SA, Koen A, Cutland CL, et al. Antibody kinetics and response to routine vaccinations in infants born to women who received an investigational trivalent group B Streptococcus polysaccharide CRM197-conjugate vaccine during pregnancy[J]. Clin Infect Dis, 2017, 65(11): 1897-1904.
doi: 10.1093/cid/cix666 |
[44] |
Absalon J, Segall N, Block SL, et al. Safety and immunogenicity of a novel hexavalent group B Strep-tococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1/2, randomised, placebo-controlled, observer-blinded, dose-escalation trial[J]. Lancet Infect Dis, 2021, 21(2): 263-274.
doi: 10.1016/S1473-3099(20)30478-3 pmid: 32891191 |
[45] |
Lin SM, Jang AY, Zhi Y, et al. Vaccination with a latch peptide provides serotype-independent protection against group B Streptococcus infection in mice[J]. J Infect Dis, 2017, 217(1): 93-102.
doi: 10.1093/infdis/jix565 |
[1] | 陈雯雯, 戴淑珍, 许丽萍. 新生儿心律失常临床特征、治疗及预后分析[J]. 临床儿科杂志, 2023, 41(7): 507-513. |
[2] | 向超, 章容, 康兰, 雷小平, 刘兴琴, 董文斌. 血糖变异系数和SNAPPE-II与危重新生儿预后的相关性[J]. 临床儿科杂志, 2023, 41(6): 430-435. |
[3] | 许景林, 杨汉松, 陈新华, 陈江滨, 李晓庆, 张伟峰, 陈冬梅. 连续性血液净化治疗新生儿脓毒性休克伴急性肾损伤临床分析[J]. 临床儿科杂志, 2023, 41(6): 436-441. |
[4] | 黄丽莲, 陈洁琳, 李英乔, 庞夏玲, 谭杰, 黄惠萍, 冯燕华, 覃敏, 罗静思. 新生儿期起病慢性肉芽肿病临床与基因分析[J]. 临床儿科杂志, 2023, 41(6): 464-469. |
[5] | 张拥军, 朱天闻. 新生儿高氨血症的早期诊断及精准干预[J]. 临床儿科杂志, 2023, 41(4): 241-246. |
[6] | 陈燕, 王琳. 重视新生儿高氨血症[J]. 临床儿科杂志, 2023, 41(4): 247-251. |
[7] | 深圳新生儿数据协作网. 新生儿高氨血症多中心现状调查及临床分析[J]. 临床儿科杂志, 2023, 41(4): 252-258. |
[8] | 张银纯, 莫文辉, 白波, 陈进勉, 石聪聪, 古霞, 肖昕, 郝虎. 尿素循环障碍所致新生儿高氨血症基因筛查和早期干预[J]. 临床儿科杂志, 2023, 41(4): 259-265. |
[9] | 楚晓云, 孙祎璠, 颜崇兵, 洪文超, 龚小慧, 蔡成. 新生儿尿素循环障碍5例临床分析[J]. 临床儿科杂志, 2023, 41(4): 266-271. |
[10] | 梁黎黎. 高苯丙氨酸血症遗传分型与诊治[J]. 临床儿科杂志, 2023, 41(2): 92-97. |
[11] | 马翠霞, 封露露, 马倩倩, 李扬, 封纪珍. 新生儿高苯丙氨酸血症筛查及PAH基因变异和缺失分析[J]. 临床儿科杂志, 2023, 41(2): 98-102. |
[12] | 周建国. 超早产儿死亡原因和对策建议[J]. 临床儿科杂志, 2023, 41(10): 654-657. |
[13] | 郝庆飞, 陈静, 刘丽君, 李高攀, 陈浩明, 张静, 郭宏湘, 程秀永. 新生儿序贯器官衰竭评估评分对极低/超低出生体重儿晚发型败血症死亡风险预测价值[J]. 临床儿科杂志, 2023, 41(10): 670-674. |
[14] | 卢晓燕, 陈绍红, 陈影影, 周文俊, 周婵, 宋燕, 李禄全, 唐文燕. 34周以下早产儿促甲状腺激素延迟升高及影响因素[J]. 临床儿科杂志, 2023, 41(10): 675-679. |
[15] | 胡海利, 李卫东, 王燕, 宋旺生, 马庆庆. 合肥市原发性肉碱缺乏症新生儿筛查及基因变异分析[J]. 临床儿科杂志, 2023, 41(10): 680-684. |
|