临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (5): 394-400.doi: 10.12372/jcp.2023.22e0555
• 文献综述 • 上一篇
许枭, 赵琳 综述, 龚方戚 审校
收稿日期:
2022-04-26
出版日期:
2023-05-15
发布日期:
2023-05-10
Reviewer: XU Xiao, ZHAO Lin, Reviser: GONG Fangqi
Received:
2022-04-26
Online:
2023-05-15
Published:
2023-05-10
摘要:
血管平滑肌细胞(VSMCs)是血管壁重要的细胞组分,对于维持血管正常生理功能发挥重要作用。VSMCs具有高度的可塑性,异常的VSMCs表型转化促进多种心血管疾病的发生发展。近年来儿童心血管健康问题日益突出,给社会经济发展带来了沉重的负担。文章对VSMCs表型转化在川崎病、动脉瘤、原发性高血压、肺动脉高压、主动脉缩窄和多发性大动脉炎等儿童心血管疾病中的研究进行总结,为儿童心血管疾病的防治提供潜在靶点。
许枭, 赵琳, 龚方戚. 血管平滑肌细胞表型转化在儿童心血管疾病中的作用[J]. 临床儿科杂志, 2023, 41(5): 394-400.
XU Xiao, ZHAO Lin, GONG Fangqi. Role of vascular smooth muscle cell phenotypic switching in cardiovascular diseases in children[J]. Journal of Clinical Pediatrics, 2023, 41(5): 394-400.
[1] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. |
[2] |
Zhu Y, Guo P, Zou Z, et al. Status of cardiovascular health in Chinese children and adolescents : a cross-sectional study in China[J]. JACC Asia, 2022, 2(1): 87-100.
doi: 10.1016/j.jacasi.2021.09.007 |
[3] |
Liu M, Gomez D. Smooth muscle cell phenotypic diversity[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1715-1723.
doi: 10.1161/ATVBAHA.119.312131 pmid: 31340668 |
[4] | Chakraborty R, Chatterjee P, Dave JM, et al. Targeting smooth muscle cell phenotypic switching in vascular disease[J]. JVS Vasc Sci, 2021, 2: 79-94. |
[5] |
Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture[J]. Physiol Rev, 1979, 59(1): 1-61.
doi: 10.1152/physrev.1979.59.1.1 pmid: 108688 |
[6] |
Allahverdian S, Chaabane C, Boukais K, et al. Smooth muscle cell fate and plasticity in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4): 540-550.
doi: 10.1093/cvr/cvy022 pmid: 29385543 |
[7] |
Worssam MD, Jorgensen HF. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases[J]. Biochem Soc Trans, 2021, 49(5): 2101-2111.
doi: 10.1042/BST20210138 |
[8] |
Pan H, Xue C, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation, 2020, 142(21): 2060-2075.
doi: 10.1161/CIRCULATIONAHA.120.048378 |
[9] |
Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-like factor 4)[J]. Arterioscler Thromb Vasc Biol, 2021, 41(11): 2693-2707.
doi: 10.1161/ATVBAHA.121.316600 |
[10] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. |
[11] | Subspecialty Group of Cardiology, the Society of Pediatrics, Chinese Medcial Association, et al. Recommendations for clinical management of Kawasaki disease with coronary artery lesions (2020 revision)[J]. Zhonghua Er Ke Za Zhi, 2020, 58(9): 718-724. |
[12] |
Orenstein JM, Shulman ST, Fox LM, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study[J]. PLoS One, 2012, 7(6): e38998.
doi: 10.1371/journal.pone.0038998 |
[13] |
Suganuma E, Sato S, Honda S, et al. A novel mouse model of coronary stenosis mimicking Kawasaki disease induced by Lactobacillus casei cell wall extract[J]. Exp Anim, 2020, 69(2): 233-241.
doi: 10.1538/expanim.19-0124 |
[14] | Porritt RA, Zemmour D, Abe M, et al. NLRP3 inflam-masome mediates immune-stromal interactions in vasculitis[J]. Circ Res, 2021, 129(9): e183-e200. |
[15] |
Noval Rivas M, Arditi M. Kawasaki disease: patho-physiology and insights from mouse models[J]. Nat Rev Rheumatol, 2020, 16(7): 391-405.
doi: 10.1038/s41584-020-0426-0 |
[16] |
Arora K, Guleria S, Jindal AK, et al. Platelets in Kawasaki disease: is this only a numbers game or something beyond?[J]. Genes Dis, 2020, 7(1): 62-66.
doi: 10.1016/j.gendis.2019.09.003 pmid: 32181276 |
[17] |
Zeng Z, Xia L, Fan X, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair[J]. J Clin Invest, 2019, 129(3): 1372-1386.
doi: 10.1172/JCI124508 pmid: 30645204 |
[18] |
Zhang Y, Wang Y, Zhang L, et al. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRbeta vascular smooth muscle cell axis[J]. Circ Res, 2020, 127(7): 855-873.
doi: 10.1161/CIRCRESAHA.120.316951 pmid: 32597702 |
[19] |
Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1351-1368.
doi: 10.1161/ATVBAHA.119.312787 pmid: 31144989 |
[20] |
Garrido E, Metayer T, Borha A, et al. Intracranial aneurysms in pediatric population: a two-center audit[J]. Childs Nerv Syst, 2021, 37(8): 2567-2575.
doi: 10.1007/s00381-021-05151-6 |
[21] |
Nakajima N, Nagahiro S, Sano T, et al. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls[J]. Acta Neuropathol, 2000, 100(5): 475-480.
pmid: 11045669 |
[22] |
Oka M, Shimo S, Ohno N, et al. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis[J]. Sci Rep, 2020, 10(1): 8330.
doi: 10.1038/s41598-020-65361-x pmid: 32433495 |
[23] |
Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes[J]. Nat Rev Cardiol, 2021, 18(5): 331-348.
doi: 10.1038/s41569-020-00472-6 pmid: 33353985 |
[24] |
Pedroza AJ, Tashima Y, Shad R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2195-2211.
doi: 10.1161/ATVBAHA.120.314670 pmid: 32698686 |
[25] |
Clark ER, Helliwell RJ, Bailey MA, et al. Preservation of smooth muscle cell integrity and function: a target for limiting abdominal aortic aneurysm expansion?[J]. Cells, 2022, 11(6): 1043.
doi: 10.3390/cells11061043 |
[26] |
Benenson I, Waldron FA, Porter S. Pediatric hypertension: a guideline update[J]. Nurse Pract, 2020, 45(5): 16-23.
doi: 10.1097/01.NPR.0000660332.31690.68 pmid: 32271260 |
[27] |
Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, et al. Early programming of adult systemic essential hypertension[J]. Int J Mol Sci, 2020, 21(4): 1203.
doi: 10.3390/ijms21041203 |
[28] |
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension[J]. Cardiovasc Res, 2018, 114(4): 529-539.
doi: 10.1093/cvr/cvy023 pmid: 29394331 |
[29] |
Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction[J]. Hypertens Res, 2021, 44(2): 129-146.
doi: 10.1038/s41440-020-00553-6 |
[30] | Li Y, Li H, Xing W, et al. Vascular smooth muscle cell-specific miRNA-214 knockout inhibits angiotensin II-induced hypertension through upregulation of Smad7[J]. FASEB J, 2021, 35(11): e21947. |
[31] |
Jin L, Lin X, Yang L, et al. AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension[J]. Hypertension, 2018, 71(2): 262-272.
doi: 10.1161/HYPERTENSIONAHA.117.09651 pmid: 29279317 |
[32] | Fang G, Qi J, Huang L, et al. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension[J]. Biosci Rep, 2019, 39(3): BSR20182229. |
[33] | 中华医学会呼吸病学分会肺栓塞与肺血管病学组. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(1): 11-51. |
[34] |
Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management[J]. Eur Respir J, 2019, 53(1): 1801916.
doi: 10.1183/13993003.01916-2018 |
[35] | Zhang W, Tao Z, Xu F, et al. An overview of miRNAs involved in PASMC phenotypic switching in pulmonary hypertension[J]. Biomed Res Int, 2021, 2021: 5765029. |
[36] |
Gong J, Chen Z, Chen Y, et al. Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension[J]. Respir Res, 2019, 20(1): 53.
doi: 10.1186/s12931-019-1018-x |
[37] |
Wang L, Rice M, Swist S, et al. BMP9 and BMP10 act directly on vascular smooth muscle cells for generation and maintenance of the contractile state[J]. Circulation, 2021, 143(14): 1394-1410.
doi: 10.1161/CIRCULATIONAHA.120.047375 pmid: 33334130 |
[38] |
Yeo Y, Yi ES, Kim JM, et al. FGF12 (fibroblast growth factor 12) inhibits vascular smooth muscle cell remodeling in pulmonary arterial hypertension[J]. Hypertension, 2020, 76(6): 1778-1786.
doi: 10.1161/HYPERTENSIONAHA.120.15068 pmid: 33100045 |
[39] |
Morris HE, Neves KB, Montezano AC, et al. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension[J]. Clin Sci (Lond), 2019, 133(24): 2481-2498.
doi: 10.1042/CS20190835 pmid: 31868216 |
[40] |
Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation[J]. Heart, 2017, 103(15): 1148-1155.
doi: 10.1136/heartjnl-2017-311173 pmid: 28377475 |
[41] | Tanaskovic I, Ilic S, Jurisic V, et al. Histochemical, immunohistochemical and ultrastructural analysis of aortic wall in neonatal coarctation[J]. Rom J Morphol Embrol, 2019, 60(4): 1291-1298. |
[42] |
Liu A, Li B, Yang M, et al. RNA sequencing analyses in infants patients with coarctation of the aorta[J]. Hereditas, 2021, 158(1): 32.
doi: 10.1186/s41065-021-00194-w pmid: 34425910 |
[43] |
Russo RAG, Katsicas MM. Takayasu arteritis[J]. Front Pediatr, 2018, 6: 265.
doi: 10.3389/fped.2018.00265 pmid: 30338248 |
[44] |
Millan P, Gavcovich TB, Abitbol C. Childhood-onset Takayasu arteritis[J]. Curr Opin Pediatr, 2022, 34(2): 223-228.
doi: 10.1097/MOP.0000000000001113 pmid: 35142753 |
[45] |
Watanabe R, Berry GJ, Liang DH, et al. Pathogenesis of giant cell arteritis and Takayasu arteritis-similarities and differences[J]. Curr Rheumatol Rep, 2020, 22(10): 68.
doi: 10.1007/s11926-020-00948-x pmid: 32845392 |
[46] |
Shekhonin BV, Tararak EM, Griaznov OG, et al. Phenotypes of smooth muscle cells in carotid arteries in Takayasu's disease[J]. Arkh Patol, 2003, 65(2): 31-35.
pmid: 15357245 |
[47] |
Bertipaglia B, Faggin E, Cillo U, et al. Is apoptosis of vascular smooth muscle cells involved in the development of Takayasu arteritis? Suggestions from a case report[J]. Rheumatology (Oxford), 2005, 44(4): 484-487.
doi: 10.1093/rheumatology/keh515 |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[6] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[7] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[8] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[9] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[10] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[11] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
[12] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[13] | 邬晓玲, 吕铁伟. 儿童特发性左室室性心动过速临床分析[J]. 临床儿科杂志, 2023, 41(8): 599-603. |
[14] | 孙智才, 刘玉玲, 李小琳, 潘晓芬. 儿童原发性肾病综合征合并肾上腺危象15例临床分析[J]. 临床儿科杂志, 2023, 41(8): 610-612. |
[15] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
|