临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (8): 634-640.doi: 10.12372/jcp.2023.22e0820
• 继续医学教育 • 上一篇
王燕飞, 谈林华
收稿日期:
2022-06-13
出版日期:
2023-08-15
发布日期:
2023-08-10
WANG Yanfei, TAN Linhua
Received:
2022-06-13
Online:
2023-08-15
Published:
2023-08-10
摘要:
脓毒症是宿主对感染的反应失调所致的危及生命的器官功能障碍,影响儿童健康。肠道菌群在宿主的代谢和免疫方面发挥着重要的调节作用,与多种疾病相关。研究表明,脓毒症及临床诊疗可导致患儿肠道菌群失调,从而进一步影响疾病的预后;而正常的肠道菌群可减少儿童对脓毒症的易感性,提高脓毒症的存活率,改善脏器功能的损害。文章就肠道菌群与脓毒症的相关性研究作一介绍,以期有助于儿童脓毒症的预防及治疗。
王燕飞, 谈林华. 肠道菌群在脓毒症中的作用和研究进展[J]. 临床儿科杂志, 2023, 41(8): 634-640.
WANG Yanfei, TAN Linhua. Research progress on the role of intestinal flora in sepsis[J]. Journal of Clinical Pediatrics, 2023, 41(8): 634-640.
[1] |
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3): 223-230.
doi: 10.1016/S2213-2600(18)30063-8 pmid: 29508706 |
[2] |
Chen P, Billiar T. Gut microbiota and multiple organ dysfunction syndrome (MODS)[J]. Adv Exp Med Biol, 2020, 1238: 195-202.
doi: 10.1007/978-981-15-2385-4_11 pmid: 32323186 |
[3] |
Brussow H. Problems with the concept of gut microbiota dysbiosis[J]. Microb Biotechnol, 2020, 13(2): 423-434.
doi: 10.1111/1751-7915.13479 pmid: 31448542 |
[4] |
Adelman MW, Woodworth MH, Langelier C, et al. The gut microbiome's role in the development, maintenance, and outcomes of sepsis[J]. Crit Care, 2020, 24(1): 278.
doi: 10.1186/s13054-020-02989-1 |
[5] |
Liu W, Cheng M, Li J, et al. Classification of the gut microbiota of patients in intensive care units during development of sepsis and septic shock[J]. Genomics Proteomics Bioinformatics, 2020, 18(6): 696-707.
doi: 10.1016/j.gpb.2020.06.011 |
[6] |
Huang M, Cai S, Su J. The Pathogenesis of Sepsis and Potential Therapeutic Targets[J]. Int J Mol Sci, 2019, 20(21) :5376.
doi: 10.3390/ijms20215376 |
[7] |
Woo V, Alenghat T. Epigenetic regulation by gut microbiota[J]. Gut Microbes, 2022, 14(1): 2022407.
doi: 10.1080/19490976.2021.2022407 |
[8] |
Ke X, You K, Pichaud M, et al. Gut bacterial metabolites modulate endoplasmic reticulum stress[J]. Genome Biol, 2021, 22(1): 292.
doi: 10.1186/s13059-021-02496-8 pmid: 34654459 |
[9] |
Riazi-Rad F, Behrouzi A, Mazaheri H, et al. Impact of gut microbiota on immune system[J]. Acta Microbiol Immunol Hung, 2021. doi: 10.1556/030.2021.01532.
doi: 10.1556/030.2021.01532 |
[10] |
Fay KT, Klingensmith NJ, Chen CW, et al. The gut microbiome alters immunophenotype and survival from sepsis[J]. FASEB J, 2019, 33(10): 11258-11269.
doi: 10.1096/fj.201802188R pmid: 31306584 |
[11] |
Chen L, Li H, Chen Y, et al. Probiotic lactobacillus rhamnosus GG reduces mortality of septic mice by modulating gut microbiota composition and metabolic profiles[J]. Nutrition, 2020, 78: 110863.
doi: 10.1016/j.nut.2020.110863 |
[12] |
Morgan RL, Preidis GA, Kashyap PC, et al. Probiotics reduce mortality and morbidity in preterm, low-birth-weight infants: a systematic review and network meta-analysis of randomized trials[J]. Gastroenterology, 2020, 159(2): 467-480.
doi: S0016-5085(20)34849-6 pmid: 32592699 |
[13] |
Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
doi: 10.1038/s41591-019-0439-x pmid: 31061539 |
[14] |
Sotoudegan F, Daniali M, Hassani S, et al. Reappraisal of probiotics' safety in human[J]. Food Chem Toxicol, 2019, 129: 22-29.
doi: S0278-6915(19)30231-5 pmid: 31009735 |
[15] |
Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 649-667.
doi: 10.1038/s41575-021-00440-6 pmid: 33948025 |
[16] |
Mantziari A, Salminen S, Szajewska H, et al. Postbiotics against pathogens commonly involved in pediatric infectious diseases[J]. Microorganisms, 2020, 8(10): 1510.
doi: 10.3390/microorganisms8101510 |
[17] |
Wittekamp BHJ, Oostdijk EAN, Cuthbertson BH, et al. Selective decontamination of the digestive tract (SDD) in critically ill patients: a narrative review[J]. Intensive Care Med, 2020, 46(2): 343-349.
doi: 10.1007/s00134-019-05883-9 pmid: 31820032 |
[18] |
Buitinck SH, Jansen R, Bosman RJ, et al. Eradication of resistant and susceptible aerobic gram-negative bacteria from the digestive tract in critically ill patients; an observational cohort study[J]. Front Microbiol, 2021, 12: 779805.
doi: 10.3389/fmicb.2021.779805 |
[19] |
Sanchez-Ramirez C, Hipola-Escalada S, Cabrera-Santana M, et al. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance[J]. Critical Care, 2018, 22(1):141.
doi: 10.1186/s13054-018-2057-2 |
[20] |
Buitinck S, Jansen R, Rijkenberg S, et al. The ecological effects of selective decontamination of the digestive tract (SDD) on antimicrobial resistance: a 21-year longitudinal single-centre study[J]. Crit Care, 2019, 23(1): 208.
doi: 10.1186/s13054-019-2480-z |
[21] |
Petros A, Silvestri L, Booth R, et al. Selective decon-tamination of the digestive tract in critically ill children: systematic review and meta-analysis[J]. Pediatr Crit Care Med, 2013, 14(1): 89-97.
doi: 10.1097/PCC.0b013e3182417871 |
[22] |
Keskey R, Cone JT, DeFazio JR, et al. The use of fecal microbiota transplant in sepsis[J]. Transl Res, 2020, 226: 12-25.
doi: 10.1016/j.trsl.2020.07.002 pmid: 32649987 |
[23] |
Zhong S, Zeng J, Deng Z, et al. Fecal microbiota transplantation for refractory diarrhea in immuno-compromised diseases: a pediatric case report[J]. Ital J Pediatr, 2019, 45(1): 116.
doi: 10.1186/s13052-019-0708-9 |
[24] |
Gai X, Wang H, Li Y, et al. Fecal microbiota transplantation protects the intestinal mucosal barrier by reconstructing the gut microbiota in a murine model of sepsis[J]. Front Cell Infect Microbiol, 2021, 11: 736204.
doi: 10.3389/fcimb.2021.736204 |
[25] |
DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21): 2043-2050.
doi: 10.1056/NEJMoa1910437 |
[26] |
Nicholson MR, Mitchell PD, Alexander E, et al. Efficacy of fecal microbiota transplantation for clostridium difficile infection in children[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 612-619.
doi: 10.1016/j.cgh.2019.04.037 |
[27] |
Okumura T, Nozu T, Ishioh M, et al. Centrally administered butyrate improves gut barrier function, visceral sensation and septic lethality in rats[J]. J Pharmacol Sci, 2021, 146(4): 183-191.
doi: 10.1016/j.jphs.2021.04.005 pmid: 34116731 |
[28] |
Zhang H, Xu J, Wu Q, et al. Gut microbiota mediates the susceptibility of mice to sepsis-associated encephalopathy by butyric acid[J]. J Inflamm Res, 2022, 15: 2103-2119.
doi: 10.2147/JIR.S350566 pmid: 35386224 |
[29] | Weiss SL, Bittinger K, Lee JJ, et al. Decreased intestinal microbiome diversity in pediatric sepsis: a conceptual framework for intestinal dysbiosis to influence immuno-metabolic function[J]. Crit Care Explor, 2021, 3(3): e0360. |
[30] |
van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends Microbiol, 2021, 29(8): 700-712.
doi: 10.1016/j.tim.2021.02.001 pmid: 33674141 |
[31] |
Fei J, Fu L, Hu B, et al. Obeticholic acid alleviate lipopolysaccharide-induced acute lung injury via its anti-inflammatory effects in mice[J]. Int Immunopharmacol, 2019, 66: 177-184.
doi: S1567-5769(18)31067-1 pmid: 30468885 |
[32] | Jin P, Deng S, Tian M, et al. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/PKA/ CREB signaling axis in a rat model of sepsis[J]. Exp Neurol, 2021, 335:113504. |
[33] |
Urdaneta V, Casadesus J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Frontiers in Medicine, 2017, 4: 163.
doi: 10.3389/fmed.2017.00163 pmid: 29043249 |
[34] |
Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation[J]. Mucosal Immunol, 2019, 12(4): 851-861.
doi: 10.1038/s41385-019-0162-4 pmid: 30952999 |
[35] | Lajczak-McGinley NK, Porru E, Fallon CM, et al. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis[J]. Physiol Rep, 2020, 8(12): e14456. |
[36] | 杜转环, 马莉, 甄玲玲, 等. 5-羟色胺在脓毒症中作用机制的研究进展[J]. 中华危重病急救医学, 2019, 31(5): 662-664. |
[37] |
Gong S, Yan Z, Liu Z, et al. Intestinal microbiota mediates the susceptibility to polymicrobial sepsis-induced liver injury by granisetron generation in mice[J]. Hepatology, 2019, 69(4): 1751-1767.
doi: 10.1002/hep.30361 pmid: 30506577 |
[38] |
Wang J, Gong S, Wang F, et al. Granisetron protects polymicrobial sepsis-induced acute lung injury in mice[J]. Biochem Biophys Res Commun, 2019, 508(4): 1004-1010.
doi: 10.1016/j.bbrc.2018.12.031 |
[39] | Juhasz L, Rutai A, Fejes R, et al. Divergent effects of the N-methyl-D-aspartate receptor antagonist kynurenic acid and the synthetic analog SZR-72 on microcirculatory and mitochondrial dysfunction in experimental sepsis[J]. Front Med (Lausanne), 2020, 7: 566-582. |
[40] |
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9(1): 3294.
doi: 10.1038/s41467-018-05470-4 pmid: 30120222 |
[41] |
Napier BA, Andres-Terre M, Massis LM, et al. Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome[J]. Proc Natl Acad Sci U S A, 2019, 116(9): 3688-3694.
doi: 10.1073/pnas.1814273116 |
[42] | Yu C, Zhu X, Zheng C, et al. Methyl diet enhanced sepsis-induced mortality through altering gut microbiota[J]. J Inflamm Reh, 2021, 14: 3107-3121. |
[43] |
Wang H, He C, Liu Y, et al. Soluble dietary fiber protects intestinal mucosal barrier by improving intestinal flora in a murine model of sepsis[J]. Biomed Pharmacother, 2020, 129: 110343.
doi: 10.1016/j.biopha.2020.110343 pmid: 32593968 |
[44] |
Melo HM, Santos LE, Ferreira ST. Diet-derived fatty acids, brain inflammation, and mental health[J]. Front Neurosci, 2019, 13: 265.
doi: 10.3389/fnins.2019.00265 |
[45] |
Yang Q, Liang Q, Balakrishnan B, et al. Role of dietary nutrients in the modulation of gut microbiota: a narrative review[J]. Nutrients, 2020, 12(2): 381.
doi: 10.3390/nu12020381 |
[46] |
De Waele E, Malbrain M, Spapen H. Nutrition in sepsis: a bench-to-bedside review[J]. Nutrients, 2020, 12(2): 395.
doi: 10.3390/nu12020395 |
[47] |
Springer AMM, Hortencio TDR, Melro EC, et al. Hypophosphatemia in critically ill pediatric patients receiving enteral and oral nutrition[J]. JPEN J Parenter Enteral Nutr, 2021, 46(4): 842-849.
doi: 10.1002/jpen.2235 pmid: 34291462 |
[48] |
Bowlin MQ, Gray MJ. Inorganic polyphosphate in host and microbe biology[J]. Trends Microbiol, 2021, 29(11): 1013-1023.
doi: 10.1016/j.tim.2021.02.002 pmid: 33632603 |
[49] |
Nichols D, Pimentel MB, Borges FTP, et al. Sustained release of phosphates from hydrogel nanoparticles suppresses bacterial collagenase and biofilm formation in vitro[J]. Front Bioeng Biotechnol, 2019, 7: 153.
doi: 10.3389/fbioe.2019.00153 |
[50] | Liang H, Song H, Zhang X, et al. Metformin attenuated sepsis-related liver injury by modulating gut microbiota[J]. Emerg Microbes Infect, 2022: 1-34. |
[51] |
Vieira-Silva S, Falony G, Belda E, et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis[J]. Nature, 2020, 581(7809): 310-315.
doi: 10.1038/s41586-020-2269-x |
[52] | Liang B, Yang S-jT, Wei KK, et al. Statin use and mortality among patients hospitalized with sepsis: a retrospective cohort study within southern California, 2008-2018[J]. Crit Care Res Pract, 2022: 7127531. |
[53] |
Li Y, Zhao H, Sun G, et al. Alterations in the gut microbiome and metabolome profiles of septic rats treated with aminophylline[J]. J Transl Med, 2022, 20(1): 69.
doi: 10.1186/s12967-022-03280-3 pmid: 35115021 |
[54] | Mu S, Zhang J, Du S, et al. Gut microbiota modulation and anti-inflammatory properties of Xuanbai Chengqi decoction in septic rats[J]. J Ethnopharmacol, 2021, 267: 113534. |
[55] | Zhan L, Liu H, Zheng J, et al. Electroacupuncture at zusanli alleviates sepsis by regulating the TLR4-MyD88-NF-Kappa B pathway and diversity of intestinal flora[J]. Evid Based Complement Alternat Med, 2022: 6706622. |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[6] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[7] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[8] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[9] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[10] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[11] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
[12] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[13] | 邬晓玲, 吕铁伟. 儿童特发性左室室性心动过速临床分析[J]. 临床儿科杂志, 2023, 41(8): 599-603. |
[14] | 孙智才, 刘玉玲, 李小琳, 潘晓芬. 儿童原发性肾病综合征合并肾上腺危象15例临床分析[J]. 临床儿科杂志, 2023, 41(8): 610-612. |
[15] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
|