临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (9): 650-655.doi: 10.12372/jcp.2023.23e0540
季涛云
收稿日期:
2023-06-20
出版日期:
2023-09-15
发布日期:
2023-09-05
基金资助:
JI Taoyun
Received:
2023-06-20
Online:
2023-09-15
Published:
2023-09-05
摘要:
发育性癫痫性脑病(DEE)是以早发癫痫、脑电图异常及发育落后或倒退为主要特征的一组疾病,病因复杂,致残率、致死率高。随着二代测序技术的发展,越来越多与DEE相关的遗传性病因被发现,同时也加深了对遗传相关DEE发病机制的研究,为探索不同治疗方法尤其是基因治疗提供了基础,有望在将来开展基因治疗以改善DEE的预后。
季涛云. 发育性癫痫性脑病基因治疗展望[J]. 临床儿科杂志, 2023, 41(9): 650-655.
JI Taoyun. Prospect of gene therapy for developmental and epileptic encephalopathy[J]. Journal of Clinical Pediatrics, 2023, 41(9): 650-655.
表1
DEE致病基因分类"
编码蛋白功能 | 致病基因 |
---|---|
离子通道 | SCN1A、SCN1B、SCN2A、SCN3A、SCN8A、KCNA2、KCNB1、KCNC2、KCNQ2、KCNT1、KCNT2、CACNA1A、CACNA1E、GABRA1、GABRA2、GABRA5、GABRB1、GABRB2、GABRB3、GABRG2、GABBR2、FRRS1L、GRIN1、GRIN2B、GRIN2D |
膜运输调节 | STX1B、STXBP1、CPLX1、NSF、SLC1A2、AP3B2、NAPB |
转运蛋白 | SLC25A22、SLC25A12、SLC38A3、SLC13A5、SLC12A5、ATP6V1A、ATP1A2、ATP1A3、ATP6V0A1、SLC35A2 |
细胞骨架蛋白 | SPTAN1、ACTL6B |
细胞代谢及信号转导 | ARX、WWOX、FGF12、FGF13、DMXL2、SZT2、NTRK2、YWHAG |
细胞黏附分子 | PCDH19 |
[1] |
Palmer EE, Howell K, Scheffer IE. Natural history studies and clinical trial readiness for genetic developmental andepileptic encephalopathies[J]. Neurotherapeutics, 2021, 18(3): 1432-1444.
doi: 10.1007/s13311-021-01133-3 |
[2] |
Ware TL, Huskins SR, Grinton BE, et al. Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania[J]. Epilepsia Open, 2019, 4(3): 504-510.
doi: 10.1002/epi4.12350 pmid: 31440733 |
[3] |
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521.
doi: 10.1111/epi.13709 pmid: 28276062 |
[4] |
Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1349-1397.
doi: 10.1111/epi.17239 pmid: 35503712 |
[5] |
Glasscock E, Qian J, Yoo JW, et al. Masking epilepsy by combining two epilepsy genes[J]. Nat Neurosci, 2007, 10: 1554-1558.
pmid: 17982453 |
[6] |
Mefford HC, Yendle SC, Hsu C, et al. Rare copy number variants are an important cause of epileptic encephalopathies[J]. Ann Neurol, 2011, 70(6): 974-985.
doi: 10.1002/ana.22645 pmid: 22190369 |
[7] |
Ma Y, Chen C, Wang Y, et al. Analysis copy number variation of Chinese children in early-onset epileptic encephalopathies with unknown cause: CNVs analysis in EOEEs[J]. Clin Genet, 2016, 90(5): 428-436.
doi: 10.1111/cge.12768 pmid: 26925868 |
[8] |
Myers CT, Hollingsworth G, Muir AM, et al. Parental mosaicism in “de novo” epileptic encephalopathies[J]. N Engl J Med, 2018, 378: 1646-1648.
doi: 10.1056/NEJMc1714579 |
[9] |
de Lange IM, Koudijs MJ, van ’t Slot R, et al. Assessment of parental mosaicism in SCN1A-related epilepsy by single-molecule molecular inversion probes and next-generation sequencing[J]. J Med Genet, 2018, 56: 75-80.
doi: 10.1136/jmedgenet-2018-105672 |
[10] |
Carvill GL, Engel KL, Ramamurthy A, et al. Aberrant inclusion of a poison exon causes Dravet syndrome and related SCN1A-associated genetic epilepsies[J]. Am J Hum Genet, 2018, 103(6): 1022-1029.
doi: S0002-9297(18)30399-9 pmid: 30526861 |
[11] |
Winawer MR, Griffin NG, Samanamud J, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy[J]. Ann Neurol, 2018, 83(6): 1133-1146.
doi: 10.1002/ana.v83.6 |
[12] |
Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly[J]. Nat Genet, 2012, 44(8): 941-945.
doi: 10.1038/ng.2329 |
[13] |
Sim NS, Seo Y, Lim JS, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation[J]. Neurol Genet, 2018, 4(6): e294.
doi: 10.1212/NXG.0000000000000294 |
[14] |
Ye Z, Chatterton Z, Pflueger J, et al. Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain[J]. Brain Commun, 2021, 3(1): fcaa235.
doi: 10.1093/braincomms/fcaa235 |
[15] |
Kim S, Baldassari S, Sim NS, et al. Detection of brain somatic mutations in cerebrospinal fluid from refractory epilepsy patients[J]. Ann Neurol, 2021, 89(6): 1248-1252.
doi: 10.1002/ana.v89.6 |
[16] |
Guerrini R, Conti V, Mantegazza M, et al. Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum[J]. Physiol Rev, 2023, 103(1): 433-513.
doi: 10.1152/physrev.00063.2021 |
[17] |
Hasan S, Balobaid A, Grottesi A, et al. Lethal digenic mutations in the K1 channels Kir4.1 (KCNJ10) and SLACK (KCNT1) associated with severe-disabling seizures and neurodevelopmental delay[J]. J Neurophysiol, 2017, 118: 2402-2411.
doi: 10.1152/jn.00284.2017 |
[18] |
Lado FA, Rubboli G, Capovilla G, et al. Pathophysiology of epileptic encephalopathies[J]. Epilepsia, 2013, 54: 6-13.
doi: 10.1111/epi.2013.54.issue-s8 |
[19] |
Scharfman HE. The neurobiology of epilepsy[J]. Curr Neurol Neurosci Rep, 2007, 7: 348-354.
doi: 10.1007/s11910-007-0053-z |
[20] |
Galanopoulou AS, Moshe SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies[J]. Biomark Med, 2011, 5: 615-628.
doi: 10.2217/bmm.11.71 pmid: 22003910 |
[21] |
Haas KZ, Sperber EF, Opanashuk LA, et al. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling[J]. Hippocampus, 2001, 11: 615-625.
pmid: 11811655 |
[22] |
Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy[J]. Nat Neurosci, 2006, 9: 1142-1149.
pmid: 16921370 |
[23] |
Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an SCN1A gene mutation[J]. J Neurosci, 2007, 27: 5903-5914.
doi: 10.1523/JNEUROSCI.5270-06.2007 pmid: 17537961 |
[24] |
Ito S, Ogiwara I, Yamada K, et al. Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment[J]. Neurobiol Dis, 2013, 49: 29-40.
doi: 10.1016/j.nbd.2012.08.003 pmid: 22986304 |
[25] | Mantegazza M, Broccoli V. SCN1A/NaV1.1 channel-opathies: mechanisms in expression systems, animal models, and human iPSC models[J]. Epilepsia, 2019, 60: S25-S38. |
[26] |
Mantegazza M, Cestèle S. Pathophysiological mechanisms of migraine and epilepsy: similarities and differences[J]. Neurosci Lett, 2018, 667: 92-102
doi: S0304-3940(17)30923-0 pmid: 29129678 |
[27] |
Prontera P, Sarchielli P, Caproni S, et al. Epilepsy in hemiplegic migraine: genetic mutations and clinical implications[J]. Cephalalgia, 2018, 38:361-173.
doi: 10.1177/0333102416686347 pmid: 28058944 |
[28] |
Salgueiro-Pereira AR, Duprat F, Pousinha PA, et al. A two-hitstory: seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies[J]. Neurobiol Dis, 2019, 125: 31-44.
doi: S0969-9961(19)30012-9 pmid: 30659983 |
[29] | Gardella E, Marini C, Trivisano M, et al. The phenotype of SCN8A developmental and epileptic encephalopathy[J]. Neurology, 2018, 91: e1112-e1124. |
[30] |
Johannesen KM, Liu Y, Koko M, et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications[J]. Brain, 2022, 145: 2991-3009.
doi: 10.1093/brain/awab321 |
[31] |
Liu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability[J]. Brain, 2019, 142: 376-390.
doi: 10.1093/brain/awy326 |
[32] |
Wagnon JL, Barker BS, Ottolini M, et al. Loss-of-function variants of SCN8A in intellectual disability without seizures[J]. Neurol Genet, 2017, 3: e170.
doi: 10.1212/NXG.0000000000000170 |
[33] |
Boerma RS, Braun KP, van den Broek MP, et al. Remarkable phenytoin sensitivity in 4 children with SCN8A related epilepsy: a molecular neuropharmacological approach[J]. Neurotherapeutics, 2016, 13: 192-197.
doi: 10.1007/s13311-015-0372-8 pmid: 26252990 |
[34] |
Du J, Simmons S, Brunklaus A, et al. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders[J]. Eur J Paediatr Neurol, 2020, 24: 129-133.
doi: 10.1016/j.ejpn.2019.12.019 |
[35] |
Stamberger H, Nikanorova M, Willemsen MH, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy[J]. Neurology, 2016, 86: 954-962.
doi: 10.1212/WNL.0000000000002457 pmid: 26865513 |
[36] |
Tanenhaus A, Stowe T, Young A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates[J]. Hum Gene Ther, 2022, 33(11-12): 579-597.
doi: 10.1089/hum.2022.037 pmid: 35435735 |
[37] |
Prabhakar S, Cheah PS, Zhang X, et al. Long-term therapeutic efficacy of intravenous AAV-mediated hamartin replacement in mouse model of tuberous sclerosis type 1[J]. Mol Ther Methods Clin Dev, 2019, 15:18-26.
doi: 10.1016/j.omtm.2019.08.003 |
[38] |
Gao Y, Irvine EE, Eleftheriadou I, et al. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder[J]. Brain, 2020, 143(3): 811-832.
doi: 10.1093/brain/awaa028 pmid: 32125365 |
[39] |
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders[J]. Med Res Rev, 2021, 41(5): 2656-2688.
doi: 10.1002/med.v41.5 |
[40] |
Lenk GM, Jafar-Nejad P, Hill SF, et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome[J]. Ann Neurol, 2020, 87(3): 339-346.
doi: 10.1002/ana.25676 pmid: 31943325 |
[41] |
Han Z, Chen C, Christiansen A, et al. Antisense oligonucleotides increase SCN1A expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome[J]. Sci Transl Med, 2020, 12: eaaz6100.
doi: 10.1126/scitranslmed.aaz6100 |
[42] |
Wengert ER, Wagley PK, Strohm SM, et al. Targeted augmentation of nuclear gene output (TANGO) of SCN1A rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet syndrome[J]. Brain Res, 2022, 1775: 147743.
doi: 10.1016/j.brainres.2021.147743 |
[43] | ClinicalTrials.gov. NCT04442295. An open-label study to investigate the safety of single and multiple ascending doses of STK-001 in children and adolescents with Dravet syndrome [DB/OL]. [2023-03-08]. Bethesda, MD, USA: U.S. National Library of Medicine, 2022. https://www.clinicaltrials.gov/ct2/show/record/NCT04442295. |
[44] |
Guerrini R, Balestrini S, Wirrell EC, et al. Monogenic epilepsies: disease mechanisms, clinical phenotypes, and targeted therapies[J]. Neurology, 2021, 97(17): 817-831.
doi: 10.1212/WNL.0000000000012744 pmid: 34493617 |
[45] |
Turner TJ, Zourray C, Schorge S, et al. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy[J]. J Neurochem, 2021, 157(2): 229-262.
doi: 10.1111/jnc.v157.2 |
[1] | 习必鑫, 胡群, 刘爱国. 范可尼贫血基因治疗研究进展[J]. 临床儿科杂志, 2023, 41(2): 156-160. |
[2] | 徐永丽, 杨静, 周兰琪, 周建华. 17q12微缺失综合征3例报告并文献复习[J]. 临床儿科杂志, 2023, 41(1): 60-65. |
[3] | 方红军, 杨赛, 旷小军, 江志, 周珍, 王丽娟, 吴丽文, 杨理明, 刘舒蕾, 廖红梅. Duchenne型肌营养不良171例临床表型与基因型特征分析[J]. 临床儿科杂志, 2022, 40(3): 189-195. |
[4] | 杨小燕, 卞秋涵, 庹媛媛, 王顶环, 黄璟. 遗传性血小板功能障碍性疾病的诊治与管理[J]. 临床儿科杂志, 2022, 40(2): 87-94. |
[5] | 王立,苏喆,焦燕华,等. TRPM6基因变异致遗传性低镁血症1例报告并文献复习[J]. 临床儿科杂志, 2021, 39(10): 765-. |
[6] | 胡灿,田鑫,贺湘玲,等. 复合杂合变异致遗传性凝血因子Ⅻ缺乏症1例报告并文献复习[J]. 临床儿科杂志, 2021, 39(10): 768-. |
[7] | 张桐,汤继宏. 腓骨肌萎缩症一家系报告并文献复习[J]. 临床儿科杂志, 2021, 39(1): 69-. |
[8] | 王一铭,李白,刘玉峰. 儿童重型遗传性血管性血友病2 例临床分析[J]. 临床儿科杂志, 2020, 38(9): 658-. |
[9] | 桂怡婷,李强,桂永浩. 罕见病的基因治疗应用与展望[J]. 临床儿科杂志, 2020, 38(10): 794-. |
[10] | 徐珍娥,华子瑜,朱珉,等. 新生儿多脏器型醛固酮减少症Ⅰ型2 例报告并文献复习[J]. 临床儿科杂志, 2020, 38(1): 56-. |
[11] | 魏建华. 原发性纤毛不动综合征临床管理的研究进展[J]. 临床儿科杂志, 2019, 37(2): 144-. |
[12] | 欧寒冰. 重型β地中海贫血的治疗进展[J]. 临床儿科杂志, 2019, 37(2): 153-. |
[13] | 张兴道,曹海燕,原新慧,等. 遗传性无纤维蛋白原血症1 例临床及基因分析[J]. 临床儿科杂志, 2019, 37(12): 920-. |
[14] | 孙瑞迪 1, 王恒东 2, 江军 1. 瞬目反射潜伏期在遗传性周围神经病分型中的作用#br#[J]. 临床儿科杂志, 2018, 36(8): 602-. |
[15] | 赵延凤, 黄宇戈. 婴儿型多囊肾 1 例临床表型与基因型分析#br#[J]. 临床儿科杂志, 2018, 36(6): 420-. |
|