[1] |
Gemke RJ, van Vught J. Scoring systems in pediatric intensive care: PRISM III versus PIM[J]. Intensive Care Med, 2002, 28(2): 204-207.
|
[2] |
Joyce EL, Crana CM, Yabes J, et al. Validation of an electronic pediatric index of mortality 2 score in a mixed quaternary PICU[J]. Pediatr Crit Care Med, 2020, 21(8): e572-e575.
|
[3] |
Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children[J]. JAMA Pediatr, 2017, 171(10): e172352.
|
[4] |
Tonial CT, Costa C, Andrades G, et al. Performance of prognostic markers in pediatric sepsis[J]. J Pediatr (Rio J), 2021, 97(3): 287-294.
|
[5] |
Rey C, Fortenberry JD. Prognostic markers for pediatric septic shock: which ones, when, and how?[J]. Intensive Care Med, 2013, 39(10): 1851-1853.
doi: 10.1007/s00134-013-3027-4
pmid: 23900580
|
[6] |
Anil AB, Anil M, Yildiz M, et al. The importance of microalbuminuria in predicting patient outcome in a PICU[J]. Pediatr Crit Care Med, 2014, 15(5): e220-e225.
|
[7] |
Nismath S, Rao SS, Baliga BS, et al. Comparative validity of microalbuminuria versus clinical mortality scores to predict pediatric intensive care unit outcomes[J]. Clin Exp Pediatr, 2020, 63(1): 20-24.
doi: 10.3345/kjp.2018.07220
pmid: 31401824
|
[8] |
Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases[J]. Autoimmun Rev, 2014, 13(3): 272-280.
doi: 10.1016/j.autrev.2013.10.010
pmid: 24189283
|
[9] |
Elemam NM, Talaat IM, Maghazachi AA. CXCL10 chemokine: a critical player in RNA and DNA viral infections[J]. Viruses, 2022, 14(11): 2445.
|
[10] |
Gao J, Wu L, Wang S, et al. Role of chemokine (C-X-C Motif) ligand 10 (CXCL10) in renal diseases[J]. Mediators Inflamm, 2020: 6194864.
|
[11] |
Liu M, Guo S, Hibbert JM, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications[J]. Cytokine Growth Factor Rev, 2011, 22(3): 121-130.
|
[12] |
Jekarl DW, Kim JY, Ha JH, et al. Diagnosis and prognosis of sepsis based on use of cytokines, chemokines, and growth factors[J]. Dis Markers, 2019: 1089107.
|
[13] |
Erez DL, Denburg MR, Afolayan S, et al. Acute kidney injury in children after hematopoietic cell transplantation is associated with elevated urine CXCL10 and CXCL9[J]. Biol Blood Marrow Transplant, 2020, 26(7): 1266-1272.
|
[14] |
Huang H, Zhou H, Wang W, et al. Prediction of acute kidney injury, sepsis and mortality in children with urinary CXCL10[J]. Pediatr Res, 2022, 92(2): 541-548.
|
[15] |
Hoste E, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury[J]. Nat Rev Nephrol, 2018, 14(10): 607-625.
doi: 10.1038/s41581-018-0052-0
pmid: 30135570
|
[16] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211.
doi: S0140-6736(19)32989-7
pmid: 31954465
|
[17] |
Amecican Academy of Pediatrics, Commitee on Hospitial Care and Society of Critial Care, Society of Critial Care Medicine, et al. Guidelines for developing admission and discharge policies for the pediatric[J]. Pediatrics, 1999(103): 840-842.
|
[18] |
Weiss SL, Peters MJ, Alhazzani W, et al. Executive summary: surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children[J]. Pediatr Crit Care Med, 2020, 21(2): 186-195.
|
[19] |
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): c179-c184.
|
[20] |
Fang F, Hu X, Dai X, et al. Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children[J]. Crit Care, 2018, 22(1): 256.
|
[21] |
Herzig DS, Luan L, Bohannon JK, et al. The role of CXCL10 in the pathogenesis of experimental septic shock[J]. Crit Care, 2014, 18(3): R113.
|
[22] |
Lee EY, Lee ZH, Song YW. CXCL10 and autoimmune diseases[J]. Autoimmun Rev, 2009, 8(5): 379-383.
doi: 10.1016/j.autrev.2008.12.002
pmid: 19105984
|
[23] |
Chan T, Gu F. Early diagnosis of sepsis using serum biomarkers[J]. Expert Rev Mol Diagn, 2011, 11(5):487-496.
doi: 10.1586/ERM.11.26
pmid: 21707457
|
[24] |
Vaidya VS, Waikar SS, Ferguson MA, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans[J]. Clin Transl Sci, 2008, 1(3): 200-208.
doi: 10.1111/j.1752-8062.2008.00053.x
pmid: 19212447
|
[25] |
程创, 石中全. miR-16-5p靶向抑制CXCL10表达减轻脂多糖诱导的HK-2人肾小管上皮细胞损伤[J]. 细胞与分子免疫学杂志, 2022, 38(3): 218-223.
|
[26] |
Kirita Y, Wu H, Uchimura K, et al. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury[J]. Proc Natl Acad Sci U S A, 2020, 117(27): 15874-15883.
|
[27] |
Lehmann JM, Claus K, Jansen C, et al. Circulating CXCL10 in cirrhotic portal hypertension might reflect systemic inflammation and predict ACLF and mortality[J]. Liver Int, 2018, 38(5): 875-884.
doi: 10.1111/liv.13610
pmid: 29105936
|
[28] |
Landreneau MJ, Mullen MT, Messe SR, et al. CCL2 and CXCL10 are associated with poor outcome after intracerebral hemorrhage[J]. Ann Clin Transl Neurol, 2018, 5(8): 962-970.
|
[29] |
Tinel C, Vermorel A, Picciotto D, et al. Deciphering the prognostic and predictive value of urinary CXCL10 in kidney recipients with BK virus reactivation[J]. Front Immunol, 2020, 11: 604353.
|
[30] |
Tinel C, Devresse A, Vermorel A, et al. Development and validation of an optimized integrative model using urinary chemokines for noninvasive diagnosis of acute allograft rejection[J]. Am J Transplant, 2020, 20(12): 3462-3476.
|