[1] |
Neu J, Walker WA. Necrotizing enterocolitis[J]. N Engl J Med, 2011. 364(3): 255-264.
|
[2] |
Nino DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600.
doi: 10.1038/nrgastro.2016.119
pmid: 27534694
|
[3] |
He YM, Li X, Perego M, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation[J]. Nat Med, 2018, 24(2): 224-231.
|
[4] |
Ibrohim IS, Pratama HA, Fauzi AR, et al. Association between prognostic factors and the clinical deterioration of preterm neonates with necrotizing enterocolitis[J]. Sci Rep, 2022, 12(1): 13911.
|
[5] |
Das A, Ariyakumar G, Gupta N, et al. Identifying immune signatures of sepsis to increase diagnostic accuracy in very preterm babies[J]. Nat Commun, 2024, 15(1): 388.
|
[6] |
Alshetaiwi H, Pervolarakis N, McIntyre LL, et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics[J]. Sci Immunol, 2020, 5(44): eaay6017.
|
[7] |
Ghaebi M, Nouri M, Ghasemzadeh A, et al. Immune regulatory network in successful pregnancy and reproductive failures[J]. Biomed Pharmacother, 2017, 88: 61-73.
doi: S0753-3322(16)32496-9
pmid: 28095355
|
[8] |
Fainaru O, Hantisteanu S, Hallak M. Immature myeloid cells accumulate in mouse placenta and promote angiogenesis[J]. Am J Obstet Gynecol, 2011, 204(6): 544.e18-544.e23.
|
[9] |
Pan T, Liu Y, Zhong LM, et al. Myeloid-derived supp-ressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice[J]. J Leukoc Biol, 2016, 100(3): 499-511.
|
[10] |
Kang X, Zhang X, Liu Z, et al. CXCR2-mediated granulocytic myeloid-derived suppressor cells' functional characterization and their role in maternal fetal interface[J]. DNA Cell Biol, 2016, 35(7): 358-365.
doi: 10.1089/dna.2015.2962
pmid: 27027573
|
[11] |
Pan T, Zhong L, Wu S, et al. 17β-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy[J]. Clin Exp Immunol, 2016, 185(1): 86-97.
doi: 10.1111/cei.12790
pmid: 26969967
|
[12] |
Kang X, Zhang X, Liu Z, et al. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25-T cells by activation of the TGF-β/β-catenin pathway[J]. Mol Hum Reprod, 2016, 22(7): 499-511.
doi: 10.1093/molehr/gaw026
pmid: 27016139
|
[13] |
Ostrand-Rosenberg S, Sinha P, Figley C, et al. Frontline science: myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice[J]. J Leukoc Biol, 2017, 101(5): 1091-1101.
|
[14] |
Liu Y, Perego M, Xiao Q, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice[J]. J Clin Invest, 2019, 129: 4261-4275.
doi: 10.1172/JCI128164
pmid: 31483289
|
[15] |
Liu Y, Fatheree NY, Dingle BM, et al. Lactobacillus reuteri DSM 17938 changes the frequency of Foxp3+ regulatory T cells in the intestine and mesenteric lymph node in experimental necrotizing enterocolitis[J]. PLoS One 2013, 8, e56547.
|
[16] |
Dingle BM, Liu Y, Fatheree NY, et al. FoxP3+ regulatory T cells attenuate experimental necrotizing enterocolitis[J]. PLoS One 2013, 8: e82963.
|
[17] |
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018 19(2): 108-119.
doi: 10.1038/s41590-017-0022-x
pmid: 29348500
|
[18] |
Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor[J]. Mol Immunol, 2020, 117: 201-215.
|
[19] |
Murphy PM, Tiffany HL. Cloning of complementary DNA encoding a functional human interleukin-8 receptor[J]. Science, 1991, 253(5025): 1280-1283.
doi: 10.1126/science.1891716
pmid: 1891716
|
[20] |
Che J, Song R, Chen B, et al. Targeting CXCR1/2: The medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead[J]. Eur J Med Chem, 2020, 185: 111853.
|
[21] |
Greene S, Robbins Y, Mydlarz WK, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models[J]. Clin Cancer Res, 2020, 26(6): 1420-1431.
doi: 10.1158/1078-0432.CCR-19-2625
pmid: 31848188
|
[22] |
Teijeira Á, Garasa S, Gato M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020, 52(5): 856-871.
doi: S1074-7613(20)30089-3
pmid: 32289253
|
[23] |
Grutkoski PS, Graeber CT, D'Amico R, et al. Regulation of IL-8RA (CXCR1) expression in polymorphonuclear leukocytes by hypoxia/reoxygenation[J]. J Leukoc Biol, 1999, 65(2): 171-178.
|
[24] |
Qin H, Zhuang W, Liu X, et al. Targeting CXCR1 alleviates hyperoxia-induced lung injury through promoting glutamine metabolism[J]. Cell Rep, 2023, 42(7): 112745.
|