[1] |
Delgado V, Ajmone Marsan N, de Waha S, et al. 2023 ESC Guidelines for the management of endocarditis[J]. Eur Heart J, 2023, 44(39): 3948-4042.
|
[2] |
Barker GM, O'Brien SM, Welke KF, et al. Major infection after pediatric cardiac surgery: a risk estimation model[J]. Ann Thorac Surg, 2010, 89(3): 843-850.
doi: 10.1016/j.athoracsur.2009.11.048
pmid: 20172141
|
[3] |
Rushani D, Kaufman JS, Ionescu-Ittu R, et al. Infective endocarditis in children with congenital heart disease: cumulative incidence and predictors[J]. Circulation, 2013, 128(13): 1412-1419.
doi: 10.1161/CIRCULATIONAHA.113.001827
pmid: 24060942
|
[4] |
Sun LC, Lai CC, Wang CY, et al. Risk factors for infective endocarditis in children with congenital heart diseases - a nationwide population-based case control study[J]. Int J Cardiol, 2017, 248: 126-130.
|
[5] |
Snygg-Martin U, Giang KW, Dellborg M, et al. Cumulative incidence of infective endocarditis in patients with congenital heart disease: a nationwide, case-control study over nine decades[J]. Clin Infect Dis, 2021, 73(8): 1469-1475.
doi: 10.1093/cid/ciab478
pmid: 34036324
|
[6] |
Murdoch DR, Corey GR, Hoen B, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the international collaboration on eEndocarditis-prospective cohort study[J]. Arch Intern Med, 2009, 169(5): 463-473.
doi: 10.1001/archinternmed.2008.603
pmid: 19273776
|
[7] |
江载芳, 申昆玲, 沈颖. 诸福棠实用儿科学[M]. 8版. 北京: 人民卫生出版社, 2013.
|
[8] |
Selton-Suty C, Célard M, Le Moing V, et al. Preeminence of Staphylococcus aureus in infective endocarditis: a 1-year population-based survey[J]. Clin Infect Dis, 2012, 54(9): 1230-1239.
doi: 10.1093/cid/cis199
pmid: 22492317
|
[9] |
Johnson JA, Boyce TG, Cetta F, et al. Infective endocarditis in the pediatric patient: a 60-year single-institution review[J]. Mayo Clin Proc, 2012, 87(7): 629-635.
doi: 10.1016/j.mayocp.2012.02.023
pmid: 22766082
|
[10] |
Fowler VG, Durack DT, Selton-Suty C, et al. The 2023 Duke-international society for cardiovascular infectious diseases criteria for infective endocarditis: updating the modified Duke criteria[J]. Clin Infect Dis, 2023, 7(4): 518-526.
|
[11] |
Gupta S, Sakhuja A, McGrath E, et al. Trends, microbiology, and outcomes of infective endocarditis in children during 2000-2010 in the United States[J]. Congenit Heart Dis, 2017, 12(2): 196-201.
doi: 10.1111/chd.12425
pmid: 27885814
|
[12] |
Amano E, Tanaka R, Ono H, et al. Association of vancomycin trough concentration and clearance with febrile neutropenia in pediatric patients[J]. Ther Drug Monit, 2022, 44(4): 543-555.
doi: 10.1097/FTD.0000000000000978
pmid: 35821590
|
[13] |
耐甲氧西林金黄色葡萄球菌感染防治专家委员会. 耐甲氧西林金黄色葡萄球菌感染防治专家共识2011年更新版[J]. 中华实验和临床感染病杂志(电子版), 2011, 5(3): 372-384.
|
[14] |
Rodvold KA, Everett JA, Pryka RD, et al. Pharmacokinetics and administration regimens of vancomycin in neonates, infants and children[J]. Clin Pharmacokinet, 1997, 33(1): 32-51.
pmid: 9250422
|
[15] |
Giachetto. GA, Telechea HM, Speranza N, et al. Vancomycin pharmacokinetic-pharmacodynamic parameters to optimize dosage admuistration in critically ill children[J]. Pediatr Crit Care Med, 2011, 12(6): e250-e254.
|
[16] |
孙丹, 张涛, 成华, 等. 替考拉宁与万古霉素在中性粒细胞缺乏伴发热的恶性血液病患儿中的有效性和安全性分析[J]. 中国药学杂志, 2022, 57(17): 1482-1488.
doi: 10.11669/cpj.2022.17.012
|
[17] |
Cao L, Li Z, Zhang P, et al. Relationship between vancomycin ttrough serum concentrations and clinical outcomes in children: a systematic review and meta-analysis[J]. Antimicrob Agents Chemother, 2022, 66(8): e0013822.
|
[18] |
Gentry CA, Rodvold KA, Novak RM, et al. Retrospective evaluation of therapies for Staphylococcus aureus endocarditis[J]. Pharmacotherapy, 1997, 17(5): 990-997.
pmid: 9324187
|
[19] |
Lodise TP, McKinnon PS, Levine DP, et al. Impact of empirical-therapy selection on outcomes of intravenous drug users with infective endocarditis caused by methicillin-susceptible Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2007, 51(10): 3731-3733.
|
[20] |
Davis JS, Sud A, O'Sullivan MVN, et al. Combination of vancomycin and β-lactam therapy for mthicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial[J]. Clin Infect Dis, 2016, 62(2): 173-180.
|
[21] |
Tong SYC, Lye DC, Yahav D, et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-Lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial[J]. JAMA, 2020, 323(6): 527-537.
doi: 10.1001/jama.2020.0103
pmid: 32044943
|
[22] |
中华医学会胸心血管外科分会瓣膜病外科学组. 感染性心内膜炎外科治疗中国专家共识[J]. 中华胸心血管外科杂志, 2022, 38(3): 146-155.
|
[23] |
胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5): 521-530.
doi: 10.16718/j.1009-7708.2022.05.001
|
[24] |
Shi Y, Wu HL, Wu YH, et al. Safety and clinical efficacy of linezolid in children: a systematic review and meta-analysis[J]. World J Pediatr, 2023, 19(2): 129-138.
|
[25] |
Ribes S, Pachón-Ibáñez ME, Domínguez MA, et al. In vitro and in vivo activities of linezolid alone and combined with vancomycin and imipenem against Staphylococcus aureus with reduced susceptibility to glycopeptides[J]. Eur J Clin Microbiol Infect Dis, 2010, 29(11): 1367-1367.
|
[26] |
Rodvold KA, McConeghy KW. Methicillin-resistant Staphylococcus aureus therapy: past, present, and future[J]. Clin Infect Dis, 2014, 58 (Suppl 1): S20-S27.
|
[27] |
杨梅, 王晓玲, 钱素云. 儿童重症患者利奈唑胺药动学/药效学与疗效和安全性分析[J]. 中国新药杂志, 2022, 31(3): 300-304.
|
[28] |
Wu J, Wu H, Wang Y, et al. Tolerability and pharmacokinetics of contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis[J]. Clin Ther, 2019, 41(6): 1164-1174.
doi: S0149-2918(19)30189-4
pmid: 31126694
|
[29] |
Wang S, Cai C, Shen Y, et al. In vitro activity of contezolid against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococcus, and strains with linezolid resistance genes from China[J]. Front Microbiol, 2021, 12: 729900.
|
[30] |
朱德妹, 叶信予, 胡付品, 等. 康替唑胺体外抗菌作用研究[J]. 中国感染与化疗杂志, 2021, 21(2): 121-135.
doi: 10.16718/j.1009-7708.2021.02.001
|
[31] |
Eckburg PB, Ge Y, Hafkin B. Single- and multiple-dose study to determine the safety, tolerability, pharmacokinetics, and food effect of oral MRX-I versus linezolid in healthy adult subjects[J]. Antimicrob Agents Chemother, 2017, 61(4): e02181-16.
|
[32] |
Fang E, Yang H, Yuan H. 1702. Platelet counts in contezolid complicated skin and soft tissue infection phase 2 and phase 3 clinical trials[J]. Open Forum Infect Di, 2022, 9(Supplement 2): ofac 492.
|
[33] |
Zhao X, Huang H, Yuan H, et al. A phase III multicentre, randomized, double-blind trial to evaluate the efficacy and safety of oral contezolid versus linezolid in adults with complicated skin and soft tissue infections[J]. J Antimicrob Chemother, 2022, 77(6): 1762-1769.
|
[34] |
Zhao S, Zhang W, Zhang L, et al. Use of contezolid for the treatment of refractory infective endocarditis in a patient with chronic renal failure: case report[J]. Infect Drug Resist, 2023, 16: 3761-3765.
doi: 10.2147/IDR.S413452
pmid: 37333679
|
[35] |
Wu X, Li Y, Zhang J, et al. Short-term safety, tolerability, and pharmacokinetics of MRX-I, an oxazolidinone antibacterial agent, in healthy Chinese subjects[J]. Clin Ther, 2018, 40(2): 322-332.
doi: S0149-2918(18)30002-X
pmid: 29398160
|
[36] |
Li L, Wu H, Chen Y, et al. Population pharmacokinetics study of contezolid (MRX-I), a novel oxazolidinone antibacterial agent, in Chinese patients[J]. Clin Ther, 2020, 42(5): 818-829.
doi: S0149-2918(20)30181-8
pmid: 32389326
|