临床儿科杂志 ›› 2026, Vol. 44 ›› Issue (1): 71-78.doi: 10.12372/jcp.2026.25e0928
收稿日期:2025-07-31
录用日期:2025-10-22
出版日期:2026-01-15
发布日期:2026-01-05
通讯作者:
李兰 电子信箱:基金资助:
ZHANG Wenjing1,2, WANG Fan1,2, ZHANG Li1,2, LI Lan3(
)
Received:2025-07-31
Accepted:2025-10-22
Published:2026-01-15
Online:2026-01-05
摘要:
新生儿急性肾损伤多见于危重儿,在新生儿重症监护室发生率约30%,死亡风险明显增加,且易进展为慢性肾病。文章主要对新生儿急性肾损伤的危险因素及相关新型生物标志物研究进展进行综述,总结不同危险因素导致的急性肾损伤的临床特点及相应生物标志物的灵敏度和特异度。新生儿急性肾损伤的发生具有多因素叠加特征,不同危险因素引起的病理机制存在差异,选择特异性生物标志物有助于早期诊断和精准干预。通过联合监测危险因素与标志物水平,早期识别急性肾损伤,以指导个体化治疗与预后评估。
中图分类号:
张文静, 王凡, 张莉, 李兰. 新生儿急性肾损伤危险因素及新型生物标志物研究进展[J]. 临床儿科杂志, 2026, 44(1): 71-78.
ZHANG Wenjing, WANG Fan, ZHANG Li, LI Lan. Advances in risk factors and novel biomarkers for neonatal acute kidney injury[J]. Journal of Clinical Pediatrics, 2026, 44(1): 71-78.
| [1] |
Ronco C, Bellomo R, Kellum JA. Acute kidney injury[J]. Lancet, 2019, 394(10212): 1949-1964.
doi: S0140-6736(19)32563-2 pmid: 31777389 |
| [2] |
Ramya K, Mukhopadhyay K, Kumar J. Predictive factors and risk scoring system for acute kidney injury (AKI) in sick neonates-a prospective cohort study[J]. Eur J Pediatr, 2024, 183(12): 5419-5424.
doi: 10.1007/s00431-024-05816-9 pmid: 39407040 |
| [3] |
Charlton JR, Boohaker L, Askenazi D, et al. Incidence and risk factors of early onset neonatal AKI[J]. Clin J Am Soc Nephrol, 2019, 14(2): 184-195.
doi: 10.2215/CJN.03670318 |
| [4] | Starr MC, Charlton JR, Guillet R, et al. Advances in Neonatal Acute Kidney Injury[J]. Pediatrics, 2021, 148(5): e2021051220. |
| [5] |
Askenazi D, Abitbol C, Boohaker L, et al. Optimizing the AKI definition during first postnatal week using Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates (AWAKEN) cohort[J]. Pediatr Res, 2019, 85(3): 329-338.
doi: 10.1038/s41390-018-0249-8 pmid: 30643188 |
| [6] |
De Mul A, Parvex P, Héneau A, et al. Urine output monitoring for the diagnosis of early-onset acute kidney injury in very preterm infants[J]. Clin J Am Soc Nephrol, 2022, 17(7): 949-956.
doi: 10.2215/CJN.15231121 |
| [7] | Meena J, Kumar J, Kocharlakota JP, et al. Acute kidney injury in neonates: a meta-analysis[J]. Pediatrics, 2024, 154(1): e2023065182. |
| [8] |
Wu Y, Wang H, Pei J, et al. Acute kidney injury in premature and low birth weight neonates: a systematic review and meta-analysis[J]. Pediatr Nephrol, 2022, 37(2): 275-287.
doi: 10.1007/s00467-021-05251-0 |
| [9] |
Medina Muñoz M, Cantó Cerdán M, Matías Del Pozo V, et al. Progression of serum creatinine and glomerular filtration rate in neonatal critical care patients during the first seven days of life[J]. Pediatr Nephrol, 2025, 40(5): 1783-1793.
doi: 10.1007/s00467-024-06631-y |
| [10] |
Iacobelli S, Guignard JP. Maturation of glomerular filtration rate in neonates and infants: an overview[J]. Pediatr Nephrol, 2021, 36(6): 1439-1446.
doi: 10.1007/s00467-020-04632-1 |
| [11] |
Carpenter J, Yarlagadda S, VandenHeuvel KA, et al. Human nephrogenesis can persist beyond 40 postnatal days in preterm infants[J]. Kidney Int Rep, 2024, 9(2): 436-450.
doi: 10.1016/j.ekir.2023.10.032 pmid: 38344733 |
| [12] |
Romejko K, Markowska M, Niemczyk S. The review of current knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL)[J]. Int J Mol Sci, 2023, 24(13): 10470.
doi: 10.3390/ijms241310470 |
| [13] |
Renganathan A, Warner BB, Tarr PI, et al. The progression of serum cystatin C concentrations within the first month of life after preterm birth-a worldwide systematic review[J]. Pediatr Nephrol, 2021, 36(7): 1709-1718.
doi: 10.1007/s00467-020-04543-1 |
| [14] |
Kuo J, Akison LK, Chatfield MD, et al. Serum and urinary biomarkers to predict acute kidney injury in premature infants: a systematic review and meta-analysis of diagnostic accuracy[J]. J Nephrol, 2022, 35(8): 2001-2014.
doi: 10.1007/s40620-022-01307-y pmid: 35384606 |
| [15] |
Albert C, Zapf A, Haase M, et al. Neutrophil gelatinase-associated lipocalin measured on clinical laboratory platforms for the prediction of acute kidney injury and the associated need for dialysis therapy: a systematic review and meta-analysis[J]. Am J Kidney Dis, 2020, 76(6): 826-841.
doi: 10.1053/j.ajkd.2020.05.015 pmid: 32679151 |
| [16] |
Ziegelasch N, Vogel M, Müller E, et al. Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage[J]. Pediatr Nephrol, 2019, 34(3): 449-457.
doi: 10.1007/s00467-018-4087-z pmid: 30460495 |
| [17] | Humphreys JD, Jain A, Khan AM, et al. Urinary biomarkers of acute kidney injury in neonates < 25 weeks' gestation: a pilot study[J]. Pediatr Nephrol, 2025, Epub ahead of print. DOI: 10.1007/s00467-025-06968-y. |
| [18] | Lakat T, Fekete A, Demeter K, et al. Perinatal asphyxia leads to acute kidney damage and increased renal susceptibility in adulthoods[J]. Am J Physiol Renal Physiol, 2024, 327(2): F314-F326. |
| [19] |
Bozkurt O, Yucesoy E. Acute kidney injury in neonates with perinatal asphyxia receiving therapeutic hypothermia[J]. Am J Perinatol, 2021, 38(9): 922-929.
doi: 10.1055/s-0039-1701024 |
| [20] | 李玲, 管亚飞, 张存, 等. 窒息相关新生儿急性肾损伤危险因素及临床特征分析[J]. 实用临床医药杂志, 2024, 28(18): 81-85. |
| Li L, Guan YF, Zhang C, et al. Prediction of risk factors and clinical features of asphyxia-related neonatal acute kidney injury[J]. Shiyong Linchuang Yiyao Zazhi, 2024, 28(18): 81-85. | |
| [21] |
Abdullah, Kadam P, Yachha M, et al. Urinary beta-2 microglobulin as an early predictive biomarker of acute kidney injury in neonates with perinatal asphyxia[J]. Eur J Pediatr, 2022, 181(1): 281-286.
doi: 10.1007/s00431-021-04205-w |
| [22] |
Oso BI, Oseni SBA, Aladekomo TA, et al. Predictive ability of 2-h serum neutrophil gelatinase-associated lipocalin for perinatal asphyxia-induced acute kidney injury[J]. Pediatr Nephrol, 2024, 39(1): 283-289.
doi: 10.1007/s00467-023-06054-1 |
| [23] | Ostermann M, Cennamo A, Meersch M, et al. A narrative review of the impact of surgery and anaesthesia on acute kidney injury[J]. Anaesthesia, 2020, 75(Suppl 1): e121-e133. |
| [24] | Alten JA, Cooper DS, Blinder JJ, et al. Epidemiology of acute kidney injury after neonatal cardiac surgery: a report from the multicenter neonatal and pediatric heart and renal outcomes network[J]. Crit Care Med, 2021, 49(10): e941-e951. |
| [25] |
Wu Y, Hua X, Yang G, et al. Incidence, risk factors, and outcomes of acute kidney injury in neonates after surgical procedures[J]. Pediatr Nephrol, 2020, 35(7): 1341-1346.
doi: 10.1007/s00467-020-04532-4 pmid: 32232634 |
| [26] |
Cui Y, Fang X, Li J, et al. Evaluation of neonatal acute kidney injury (AKI) after emergency gastrointestinal surgery[J]. Asian J Surg, 2023, 46(5): 1924-1930.
doi: 10.1016/j.asjsur.2022.08.086 |
| [27] |
Luan J, Fu J, Jiao C, et al. IL-18 deficiency ameliorates the progression from AKI to CKD[J]. Cell Death Dis, 2022, 13(11): 957.
doi: 10.1038/s41419-022-05394-4 pmid: 36379914 |
| [28] | Shi S, Fan J, Shu Q. Early prediction of acute kidney injury in neonates with cardiac surgery[J]. World J Pediatr Surg, 2020, 3(2): e000107. |
| [29] |
Slagle CL, Goldstein SL, Gavigan HW, et al. Association between elevated urine neutrophil gelatinase-associated lipocalin and postoperative acute kidney injury in neonates[J]. J Pediatr. 2021, 238: 193-201.
doi: 10.1016/j.jpeds.2021.07.041 |
| [30] |
Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J]. Kidney Int, 2019, 96(5): 1083-1099.
doi: S0085-2538(19)30601-5 pmid: 31443997 |
| [31] |
Coggins SA, Laskin B, Harris MC, et al. Acute kidney injury associated with late-onset neonatal sepsis: a matched cohort study[J]. J Pediatr, 2021, 231: 185-92.
doi: 10.1016/j.jpeds.2020.12.023 |
| [32] |
Al Gharaibeh FN, Mohan S, Santoro MA, et al. Acute kidney injury and early fluid load in a retrospective cohort of neonatal sepsis[J]. Pediatr Nephrol, 2023, 38(6): 1971-1977.
doi: 10.1007/s00467-022-05840-7 |
| [33] |
Abdelsattar S, Al-Amodi HS, Nazih M, et al. Genotype-phenotype correlation of TNF-α (-238, rs361525) and cystatin C for early detection of sepsis-associated aki and its severity in critically Ill neonates[J]. Int J Mol Sci, 2025, 26(14): 6738.
doi: 10.3390/ijms26146738 |
| [34] |
Ganda IJ, Kasri Y, Susanti M, et al. Kidney injury molecule type-1, interleukin-18, and insulin-like growth factor binding protein 7 levels in urine to predict acute kidney injury in pediatric sepsis[J]. Front Pediatr, 2022, 10: 1024713.
doi: 10.3389/fped.2022.1024713 |
| [35] |
Garg PM, Tatum R, Ravisankar S, et al. Necrotizing enterocolitis in a mouse model leads to widespread renal inflammation, acute kidney injury, and disruption of renal tight junction proteins[J]. Pediatric research, 2015, 78(5): 527-532.
doi: 10.1038/pr.2015.146 pmid: 26270572 |
| [36] |
Garg PM, Pittman IA, Ansari MAY, et al. Gestational age-specific clinical correlates of acute kidney injury in preterm infants with necrotizing enterocolitis[J]. Pediatr Res, 2023, 94(6): 2016-2025.
doi: 10.1038/s41390-023-02736-6 pmid: 37454184 |
| [37] | 杨霄, 张诗雨, 刘一帆, 等. 早产儿坏死性小肠结肠炎合并急性肾损伤的临床研究[J]. 中华新生儿科杂志(中英文), 2024, 39(11): 669-673. |
| Yang X, Zhang SY, Liu YF, et al. A clinical investigation on acute kidney injury among premature infants diagnosed with necrotizing enterocolitis[J]. Zhonghua Xinshengerke Zazhi, 2024, 39(11): 669-673. | |
| [38] |
Ting JY, McDougal K, De Mello A, et al. Acute kidney injury among preterm infants receiving nonsteroidal anti-inflammatory drugs: a pilot study[J]. Pediatr Neonatol. 2023, 64(3): 313-318.
doi: 10.1016/j.pedneo.2022.06.018 |
| [39] |
McWilliam SJ, Antoine DJ, Smyth RL, et al. Aminoglycoside-induced nephrotoxicity in children[J]. Pediatr Nephrol. 2017, 32(11): 2015-2025.
doi: 10.1007/s00467-016-3533-z pmid: 27848094 |
| [40] |
Murphy HJ, Thomas B, Van Wyk B, et al. Nephrotoxic medications and acute kidney injury risk factors in the neonatal intensive care unit: clinical challenges for neonatologists and nephrologists[J]. Pediatr Nephrol, 2020, 35(11): 2077-2088.
doi: 10.1007/s00467-019-04350-3 pmid: 31605211 |
| [41] |
万隽, 赖昕, 陈权耀, 等. 万古霉素血清谷浓度与药时曲线下面积预测新生儿肾毒性的临床应用价值[J]. 中国感染与化疗杂志, 2024, 24(6): 645-651.
doi: 10.16718/j.1009-7708.2024.06.003 |
| Wan J, Lai X, Chen QY, et al. Clinical utility of vancomycin serum trough concentrations and area under the curve in predicting nephrotoxicity in neonates[J]. Zhongguo Gan ran Yu Hualiao Zazhi, 2024, 24(6): 645-651. | |
| [42] |
Zhang M, Huang L, Zhu Y, et al. Epidemiology of vancomycin in combination with piperacillin/tazobactam-associated acute kidney injury in children: a systematic review and meta-analysis[J]. Ann Pharmacother, 2024, 58(10): 1034-1044.
doi: 10.1177/10600280231220379 |
| [43] |
Downes KJ, Hayes M, Fitzgerald JC, et al. Mechanisms of antimicrobial-induced nephrotoxicity in children[J]. J Antimicrob Chemother, 2020, 75(1): 1-13.
doi: 10.1093/jac/dkz325 pmid: 31369087 |
| [44] |
Downes KJ, Boge CLK, Baro E, et al. Acute kidney injury during treatment with intravenous acyclovir for suspected or confirmed neonatal herpes simplex virus infection[J]. J Pediatr, 2020, 219: 126-132.
doi: 10.1016/j.jpeds.2019.12.056 |
| [45] | 王天有, 申昆玲, 沈颖. 诸福棠实用儿科学(第9版)[M]. 北京: 人民卫生出版社, 2022: 353-354. |
| Wang TY, Shen KL, Shen Y. Zhu Futang's Practical Pediatrics (9th ed.)[M]. Beijing: People's Medical Publishing House, 2022: 353-354. | |
| [46] |
Stoops C, Stone S, Evans E, et al. Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): Reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit[J]. J Pediatr, 2019, 215: 223-228.
doi: 10.1016/j.jpeds.2019.08.046 |
| [47] |
Yang C, Xu H, Yang D, et al. A renal YY1-KIM1-DR5 axis regulates the progression of acute kidney injury[J]. Nat Commun, 2023, 14(1): 4261.
doi: 10.1038/s41467-023-40036-z pmid: 37460623 |
| [48] | Sridharan K, Al Jufairi M, Al Segai O, et al. Biomarkers in neonates receiving potential nephrotoxic drugs[J]. Eur Rev Med Pharmacol Sci, 2021, 25(22): 7078-7088. |
| [49] |
Raina R, Chakraborty R, Tibrewal A, et al. Advances in pediatric acute kidney injury[J]. Pediatr Res, 2022, 91(1): 44-55.
doi: 10.1038/s41390-021-01452-3 |
| [50] | Prideaux MA, Guillet R. The use of low-dose dopamine in the neonatal intensive care unit[J]. NeoReviews, 2024, 25(4): e207-e215. |
| [51] |
Bhatt GC, Gogia P, Bitzan M, et al. Theophylline and aminophylline for prevention of acute kidney injury in neonates and children: a systematic review[J]. Arch Dis Child, 2019, 104(7): 670-679.
doi: 10.1136/archdischild-2018-315805 pmid: 30798259 |
| [52] | Harer MW, Askenazi DJ, Boohaker LJ, et al. Association between early caffeine citrate administration and risk of acute kidney injury in preterm neonates: results from the AWAKEN study[J]. JAMA Pediatr, 2018, 172(6): e180322. |
| [53] |
Tzvi-Behr S, Schlesinger N, Ben-Shalom E, et al. The incidence of acute kidney injury in very-low-birth-weight infants treated early with caffeine[J]. Pediatr Nephrol, 2025, 40(6): 2091-2096.
doi: 10.1007/s00467-025-06694-5 |
| [54] |
Devaranavadagi RA, Thomas J, Vishwanath S, et al. Successful initiation of continuous kidney replacement therapy in an extremely premature infant[J]. Pediatr Nephrol, 2025, 40(9):2811-2813.
doi: 10.1007/s00467-025-06763-9 |
| [55] |
Robinson CH, Jeyakumar N, Luo B, et al. Long-term kidney outcomes after pediatric acute kidney injury[J]. J Am Soc Nephrol, 2024, 35(11): 1520-1532.
doi: 10.1681/ASN.0000000000000445 pmid: 39018120 |
| [56] |
Kimberly J Reidy, Ronnie Guillet, David T Selewski, et al. Advocating for the inclusion of kidney health outcomes in neonatal research: best practice recommendations by the Neonatal Kidney Collaborative[J]. J Perinatol, 2024, 44(12): 1863-1873.
doi: 10.1038/s41372-024-02030-1 pmid: 38969825 |
| [57] |
Akkoc G, Duzova A, Korkmaz A, et al. Long-term follow-up of patients after acute kidney injury in the neonatal period: abnormal ambulatory blood pressure findings[J]. BMC Nephrol, 2022, 23(1): 116.
doi: 10.1186/s12882-022-02735-5 pmid: 35321692 |
| [58] | Chen CC, Chu CH, Lin YC, et al. Neurodevelopment after neonatal acute kidney injury in very preterm-birth children[J]. Kidney Int Rep. 2023, 8(9): 1784-1791. |
| [1] | . 儿童脊髓性肌萎缩症症状前治疗专家共识(2025版)[J]. 临床儿科杂志, 2025, 43(9): 643-651. |
| [2] | 曾仕诚, 冯昆, 周娴璐, 华子瑜. 新生儿败血症疾病负担的国际比较(1990—2021)及中国启示[J]. 临床儿科杂志, 2025, 43(9): 670-679. |
| [3] | 李祎展, 唐成和, 张明霞, 张有乐, 张卫星, 员丽. 体重不一致双胎早产儿的体重与新生儿并发症的相关分析[J]. 临床儿科杂志, 2025, 43(5): 329-333. |
| [4] | 高婧, 秦飞, 李敏, 潘漪莲, 程璐明, 程蔚蔚. 妊娠妇女孕前体重指数和孕期增重现状及其对新生儿出生结局的影响[J]. 临床儿科杂志, 2025, 43(4): 243-250. |
| [5] | 徐碟, 卢春霞, 李伟, 董文斌, 康兰, 雷小平. 妊娠期糖尿病对母婴脂代谢及胎盘脂质转运酶的影响[J]. 临床儿科杂志, 2025, 43(4): 251-256. |
| [6] | 李珊珊, 胡丹丹. 儿童甲型H1N1流行性感冒相关性脑病死亡危险因素分析[J]. 临床儿科杂志, 2025, 43(3): 177-183. |
| [7] | 高晓岚, 梁欢, 陈国庆, 张惠文, 韩连书, 邱文娟, 顾学范. 滤纸片干血斑酶活性检测用于新生儿黏多糖贮积症Ⅱ型筛查的初步研究[J]. 临床儿科杂志, 2025, 43(3): 191-198. |
| [8] | 黄静, 刘晓晨, 高雄, 李晓文, 李广红, 李禄全. 脐血微量元素及氧化/抗氧化因子水平与新生儿呼吸窘迫综合征发病的相关性研究[J]. 临床儿科杂志, 2025, 43(3): 204-210. |
| [9] | 何颖, 刘志勇, 杨汉松, 蔡雅丽, 许景林, 陈冬梅. 153例新生儿肠道病毒感染临床分析与抗生素管理改进措施研究[J]. 临床儿科杂志, 2025, 43(2): 128-134. |
| [10] | 王丽辉, 崔丽平, 杨花芳, 刘兰, 唐晓娜, 赵青, 王欣, 李宝广. 24例KCNQ2基因变异癫痫患儿的临床表型与基因型分析[J]. 临床儿科杂志, 2025, 43(2): 93-98. |
| [11] | 陈超. “小体形脆弱新生儿”概念的引入及其重要意义[J]. 临床儿科杂志, 2025, 43(11): 803-806. |
| [12] | 李静, 梁旭霞, 张继红, 张春, 卢燕群, 邬华. 父母因素对单胎小体型脆弱新生儿的影响:一项5年回顾性队列研究[J]. 临床儿科杂志, 2025, 43(11): 807-815. |
| [13] | 杨梦园, 陈彦杉, 裴婉君, 李静, 董慧芳. 坏死性小肠结肠炎早产儿术后宫外发育迟缓的单中心研究[J]. 临床儿科杂志, 2025, 43(11): 823-829. |
| [14] | 郑瑞雪, 孙晓东, 吴桂兰, 沈蕾蕾. 新生儿难治性先天性乳糜胸2例报告并文献复习[J]. 临床儿科杂志, 2025, 43(10): 775-781. |
| [15] | 丁文雯, 朱凤, 骆余佳, 魏丽. 高危新生儿早期肠外营养“再喂养综合征”临床防治进展[J]. 临床儿科杂志, 2025, 43(1): 56-60. |
|
||
沪公网安备 31011002000392号