临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (1): 66-72.doi: 10.12372/jcp.2023.21e1773
邱佳韵(综述), 周国平(审校)
收稿日期:
2021-12-27
出版日期:
2023-01-15
发布日期:
2023-02-16
基金资助:
Reviewer: QIU Jiayun, Reviser: ZHOU Guoping
Received:
2021-12-27
Online:
2023-01-15
Published:
2023-02-16
摘要:
川崎病(KD)是以全身性血管炎为主要特征的儿童常见疾病,其最严重的并发症即累及冠状动脉的心血管疾病,即使治疗后,也有部分儿童遗留冠状动脉瘤等后遗症。川崎病已成为儿童获得性心脏病最常见原因之一。目前KD冠状动脉损伤的机制尚不清晰。文章从免疫遗传方向综述国内外KD冠状动脉损伤机制最新研究成果与进展。
邱佳韵(综述), 周国平(审校). 川崎病冠状动脉损伤机制免疫遗传研究进展[J]. 临床儿科杂志, 2023, 41(1): 66-72.
Reviewer: QIU Jiayun, Reviser: ZHOU Guoping. Immune genetics of coronary artery injury pathogenesis in Kawasaki disease[J]. Journal of Clinical Pediatrics, 2023, 41(1): 66-72.
[1] |
Zhang Y, Wang Y, Zhang L, et al. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRbeta vascular smooth muscle cell axis[J]. Circ Res, 2020, 127(7): 855-873.
doi: 10.1161/CIRCRESAHA.120.316951 pmid: 32597702 |
[2] |
Kong WX, Ma F Y, Fu SL, et al. Biomarkers of intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease[J]. World J Pediatr, 2019, 15(2): 168-175.
doi: 10.1007/s12519-019-00234-6 |
[3] |
Kumrah R, Vignesh P, Rawat A, et al. Immunogenetics of Kawasaki disease[J]. Clin Rev Allergy Immunol, 2020, 59(1): 122-139.
doi: 10.1007/s12016-020-08783-9 |
[4] | Dusenbery SM, Newburger JW, Colan SD, et al. Myocardial fibrosis in patients with a history of Kawasaki disease[J]. Int J Cardiol Heart Vasc, 2021, 32: 100713. |
[5] |
Zeng Z, Wang Q, Yang X, et al. Qishen granule attenuates cardiac fibrosis by regulating TGF-beta /Smad3 and GSK-3beta pathway[J]. Phytomedicine, 2019, 62: 152949.
doi: 10.1016/j.phymed.2019.152949 |
[6] |
Ser OS, Cetinkal G, Kilicarslan O, et al. The comparison of serum TGF-beta levels and associated polymorphisms in patients with coronary artery ectasia and normal coronary artery[J]. Egypt Heart J, 2021, 73(1): 32.
doi: 10.1186/s43044-021-00153-w pmid: 33788038 |
[7] | Liu Y, Fu L, Pi L, et al. An angiotensinogen gene polymorphism (rs5050) is associated with the risk of coronary artery aneurysm in Southern Chinese children with Kawasaki disease[J]. Dis Markers, 2019: 2849695. |
[8] |
Kwon YC, Kim JJ, Yun SW, et al. Male-specific association of the FCGR2A His167Arg polymorphism with Kawasaki disease[J]. PLoS One, 2017, 12(9): e0184248.
doi: 10.1371/journal.pone.0184248 |
[9] |
Hoggart C, Shimizu C, Galassini R, et al. Identification of novel locus associated with coronary artery aneurysms and validation of loci for susceptibility to Kawasaki disease[J]. Eur J Hum Genet, 2021, 29(12): 1734-1744.
doi: 10.1038/s41431-021-00838-5 pmid: 33772158 |
[10] |
Paul P, Picard C, Lyonnet L, et al. FCGR2A-HH gene variants encoding the Fc gamma receptor for the C-reactive protein are associated with enhanced monocyte CD32 expression and cardiovascular events' recurrence after primary acute coronary syndrome[J]. Biomedicines, 2022, 10(2): 495.
doi: 10.3390/biomedicines10020495 |
[11] |
Calderon-Sanchez EM, Avila-Medina J, Callejo-Garcia P, et al. Role of Orai1 and L-type CaV1.2 channels in Endothelin-1 mediated coronary contraction under ischemia and reperfusion[J]. Cell Calcium, 2020, 86: 102157.
doi: 10.1016/j.ceca.2019.102157 |
[12] | 吴琪. STIM 1/Orai 1信号通路在高压负荷诱导冠状动脉血管平滑肌细胞异常增殖中的机制研究[D]. 南昌大学, 2018. |
[13] |
Ferdosian F, Dastgheib S A, Hosseini-Jangjou SH, et al. Association of TNF-alpha rs1800629, CASP3 rs72689236 and FCGR2A rs1801274 polymorphisms with susceptibility to Kawasaki disease: a comprehensive meta-analysis[J]. Fetal Pediatr Pathol, 2021, 40(4): 320-336.
doi: 10.1080/15513815.2019.1707917 |
[14] |
Ji N, Qi Z, Wang Y, et al. Pyroptosis: a new regulating mechanism in cardiovascular disease[J]. J Inflamm Res, 2021, 14: 2647-2666.
doi: 10.2147/JIR.S308177 pmid: 34188515 |
[15] |
Zhang L, Lin K, Wang Y, et al. Protective effect of TNFRSF11A rs7239667 G > C gene polymorphism on coronary outcome of Kawasaki disease in southern Chinese population[J]. Front Genet, 2021, 12: 691282.
doi: 10.3389/fgene.2021.691282 |
[16] |
Wang X, Ding YY, Chen Y, et al. MiR-223-3p alleviates vascular endothelial injury by targeting IL6ST in Kawasaki disease[J]. Front Pediatr, 2019, 7: 288.
doi: 10.3389/fped.2019.00288 pmid: 31396494 |
[17] | Dai R, Liu Y, Zhou Y, et al. Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention[J]. J Clin Lab Anal, 2020, 34(1): e23013. |
[18] | Li Y, Wu X, Gao F, et al. MiR-197-3p regulates endothelial cell proliferation and migration by targeting IGF1R and BCL2 in Kawasaki disease[J]. Int J Clin Exp Pathol, 2019, 12(11): 4181-4192. |
[19] |
Liu C, Yang D, Wang H, et al. MicroRNA-197-3p mediates damage to human coronary artery endothelial cells via targeting TIMP3 in Kawasaki disease[J]. Mol Cell Biochem, 2021, 476(12): 4245-4263.
doi: 10.1007/s11010-021-04238-7 |
[20] |
Li Z, Jiang J, Tian L, et al. A plasma mir-125a-5p as a novel biomarker for Kawasaki disease and induces apoptosis in HUVECs[J]. PLoS One, 2017, 12(5): e0175407.
doi: 10.1371/journal.pone.0175407 |
[21] |
Wu S, Sun H, Sun B. MicroRNA-145 is involved in endothelial cell dysfunction and acts as a promising biomarker of acute coronary syndrome[J]. Eur J Med Res, 2020, 25(1): 2.
doi: 10.1186/s40001-020-00403-8 pmid: 32178736 |
[22] |
Ko TM, Chang JS, Chen SP, et al. Genome-wide transcriptome analysis to further understand neutrophil activation and lncRNA transcript profiles in Kawasaki disease[J]. Sci Rep, 2019, 9(1): 328.
doi: 10.1038/s41598-018-36520-y |
[23] |
Zhang H, Ji N, Gong X, et al. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 967-974.
doi: 10.1093/abbs/gmaa087 |
[24] |
Kim YK. Analysis of circular RNAs in the Coronary arteries of patients with Kawasaki disease[J]. J Lipid Atheroscler, 2019, 8(1): 50-57.
doi: 10.12997/jla.2019.8.1.50 |
[25] |
Miao L, Yin RX, Zhang QH, et al. A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease[J]. Sci Rep, 2019, 9(1): 18314.
doi: 10.1038/s41598-019-54603-2 pmid: 31797949 |
[26] | Guo X, Liu C, Wang GB, et al. Quantitative proteomics and bioinformatics analyses of human coronary artery endothelial cell injury induced by Kawasaki disease[J]. Zhongguo Dang Dai Er Ke Za Zhi, 2020, 22(7): 796-803. |
[27] | 蒋丰智, 赵青, 曾俊峰, 等. PTX3及NT-proBNP在小儿川崎病冠脉损害中的意义[J]. 临床儿科杂志, 2019, 37: 107-110. |
[28] |
Ching L L, Nerurkar V R, Lim E, et al. Elevated levels of Pentraxin 3 correlate with neutrophilia and coronary artery dilation during acute Kawasaki disease[J]. Front Pediatr, 2020, 8: 295.
doi: 10.3389/fped.2020.00295 pmid: 32670996 |
[29] | Barbosa JE, Stockler-Pinto MB, Cruz BOD, et al. Nrf2, NF-kappa B and PPAR beta/delta mRNA expression profile in patients with coronary artery disease[J]. Arq Bras Cardiol, 2019, 113(6): 1121-1127. |
[30] |
Qian B, Huang H, Cheng M, et al. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury[J]. Eur J Med Res, 2020, 25(1): 8.
doi: 10.1186/s40001-020-00406-5 pmid: 32183905 |
[31] |
Zhang D, Liu L, Yuan Y, et al. Oxidative phosphorylation-mediated E-Selectin upregulation is associated with endothelia-monocyte adhesion in human coronary artery endothelial cells treated with sera from patients with Kawasaki disease[J]. Front Pediatr, 2021, 9: 618267.
doi: 10.3389/fped.2021.618267 |
[32] |
Wang Y, Hu J, Liu J, et al. The role of Ca(2+)/NFAT in dysfunction and inflammation of human coronary endothelial cells induced by sera from patients with Kawasaki disease[J]. Sci Rep, 2020, 10(1): 4706.
doi: 10.1038/s41598-020-61667-y |
[33] |
Xiao X, Yang C, Qu SL, et al. S100 proteins in atherosclerosis[J]. Clin Chim Acta, 2020, 502: 293-304.
doi: S0009-8981(19)32141-2 pmid: 31794767 |
[34] |
Zandstra J, van de Geer A, Tanck MWT, et al. Biomarkers for the discrimination of acute Kawasaki disease from infections in childhood[J]. Front Pediatr, 2020, 8: 355.
doi: 10.3389/fped.2020.00355 pmid: 32775314 |
[35] |
Armaroli G, Verweyen E, Pretzer C, et al. Monocyte-derived interleukin-1beta as the driver of S100A12-induced sterile inflammatory activation of human coronary artery endothelial cells: implications for the pathogenesis of Kawasaki disease[J]. Arthritis Rheumatol, 2019, 71(5): 792-804.
doi: 10.1002/art.40784 |
[36] |
Nakashima Y, Sakai Y, Mizuno Y, et al. Lipidomics links oxidized phosphatidylcholines and coronary arteritis in Kawasaki disease[J]. Cardiovasc Res, 2021, 117(1): 96-108.
doi: 10.1093/cvr/cvz305 pmid: 31782770 |
[37] |
He YE, Qiu HX, Wu RZ, et al. Oxidised low-density lipoprotein and its receptor-mediated endothelial dysfunction are associated with coronary artery lesions in Kawasaki disease[J]. J Cardiovasc Transl Res, 2020, 13(2): 204-214.
doi: 10.1007/s12265-019-09908-y |
[38] | Wei S, Liu Q. Long noncoding RNA MALAT1 modulates sepsis-induced cardiac inflammation through the miR-150-5p/NF-kappaB axis[J]. Int J Clin Exp Pathol, 2019, 12(9): 3311-3319. |
[39] |
Chang SF, Liu SF, Chen CN, et al. Serum IP-10 and IL-17 from Kawasaki disease patients induce calcification-related genes and proteins in human coronary artery smooth muscle cells in vitro[J]. Cell Biosci, 2020, 10: 36.
doi: 10.1186/s13578-020-00400-8 |
[40] |
Chen X, Wang R, Chen W, et al. Decoy receptor-3 regulates inflammation and apoptosis via PI3K/AKT signaling pathway in coronary heart disease[J]. Exp Ther Med, 2019, 17(4): 2614-2622.
doi: 10.3892/etm.2019.7222 pmid: 30906453 |
[41] |
Wu J, Liu C, Zhang L, et al. Histone deacetylase-2 is involved in stress-induced cognitive impairment via histone deacetylation and PI3K/AKT signaling pathway modification[J]. Mol Med Rep, 2017, 16(2): 1846-1854.
doi: 10.3892/mmr.2017.6840 pmid: 28656275 |
[42] |
Hua L, Zhou Y, Hou C, et al. Shexiang baoxin pills inhibited proliferation and migration of human coronary artery smooth muscle cells via PI3K/AKT/mTOR pathway[J]. Front Cardiovasc Med, 2021, 8: 700630.
doi: 10.3389/fcvm.2021.700630 |
[43] |
Li X, Sun S, Chen D, et al. Puerarin attenuates the endothelial-mesenchymal transition induced by oxidative stress in human coronary artery endothelial cells through PI3K/AKT pathway[J]. Eur J Pharmacol, 2020, 886: 173472.
doi: 10.1016/j.ejphar.2020.173472 |
[44] |
Shi X, Guan Y, Jiang S, et al. Renin-angiotensin system inhibitor attenuates oxidative stress induced human coronary artery endothelial cell dysfunction via the PI3K/AKT/mTOR pathway[J]. Arch Med Sci, 2019, 15(1): 152-164.
doi: 10.5114/aoms.2018.74026 pmid: 30697266 |
[45] |
Zhang J, Zhuge Y, Rong X, et al. Protective roles of Xijiao Dihuang Tang on Coronary artery injury in Kawasaki disease[J]. Cardiovasc Drugs Ther, 2021, doi:10.1007/s10557-021-07277-w.
doi: 10.1007/s10557-021-07277-w |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 季涛云. 发育性癫痫性脑病基因治疗展望[J]. 临床儿科杂志, 2023, 41(9): 650-655. |
[4] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[5] | 卓木清, 李小晶, 彭炳蔚, 朱海霞, 田杨, 郑可鲁, 高媛媛, 吴文晓, 吴汶霖, 陈宗宗, 陈文雄, 曹彬彬. 儿童线粒体脑肌病临床特点分析[J]. 临床儿科杂志, 2023, 41(9): 661-667. |
[6] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[7] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[8] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[9] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[10] | 欧跃徐, 段远辉, 曹洁, 李洁玲. BRAF基因变异8例临床分析[J]. 临床儿科杂志, 2023, 41(9): 697-702. |
[11] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[12] | 杨智博, 刘力. 基因测序技术在单基因狼疮精准诊断和机制研究中的应用现状[J]. 临床儿科杂志, 2023, 41(9): 715-720. |
[13] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[14] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[15] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
|