临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (2): 150-155.doi: 10.12372/jcp.2023.22e1429
王诗明 综述, 王依闻, 张拥军 审校
收稿日期:
2022-10-24
出版日期:
2023-02-15
发布日期:
2023-02-16
基金资助:
Reviewer: WANG Shiming, Reviser: WANG Yiweng, ZHANG Yongjun
Received:
2022-10-24
Online:
2023-02-15
Published:
2023-02-16
摘要:
胎儿生长受限(FGR)是一种常见的妊娠并发症,也是围生儿发病和死亡的重要原因。FGR的不良影响持续整个生命周期,可能增加神经发育迟缓、成年期慢性代谢性疾病和死亡的风险。目前,临床上FGR胎儿的产前诊断方法检出率较低。改善检测和有效监测至关重要。生物标志物检测作为一种相对无创的检测方法在早期诊断FGR方面具有较大潜力,越来越多的生物标志物被发现具有早期预测FGR的价值。文章总结了母体外周血分子生物标志物(蛋白质、代谢物或核糖核酸)在早期诊断FGR方面的研究进展,阐述其参与FGR发生的可能机制,以期为临床识别FGR及临床决策提供参考依据。
王诗明, 王依闻, 张拥军. 生物标志物用于胎儿生长受限早期诊断研究进展[J]. 临床儿科杂志, 2023, 41(2): 150-155.
WANG Shiming, WANG Yiweng, ZHANG Yongjun. Research progress of biomarkers for early diagnosis of fetal growth restriction[J]. Journal of Clinical Pediatrics, 2023, 41(2): 150-155.
[1] |
Nardozza LM, Caetano AC, Zamarian AC, et al. Fetal growth restriction: current knowledge[J]. Arch Gynecol Obstet, 2017, 295(5): 1061-1077.
doi: 10.1007/s00404-017-4341-9 pmid: 28285426 |
[2] |
Fetal Growth Restriction: ACOG Practice Bulletin, Number 227[J]. Obstet Gynecol, 2021, 137(2): e16-e28.
doi: 10.1097/AOG.0000000000004251 pmid: 33481528 |
[3] | 中华医学会围产医学分会胎儿医学学组,中华医学会妇产科学分会产科学组. 胎儿生长受限专家共识(2019版)[J]. 中华围产医学杂志, 2019, 22(6): 361-380. |
[4] |
Blencowe H, Krasevec J, de Onis M, et al. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis[J]. Lancet Glob Health, 2019, 7(7): e849-e860.
doi: 10.1016/S2214-109X(18)30565-5 |
[5] |
Sacchi C, Marino C, Nosarti C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis[J]. JAMA Pediatr, 2020, 174(8): 772-781.
doi: 10.1001/jamapediatrics.2020.1097 pmid: 32453414 |
[6] |
Colella M, Frérot A, Novais ARB, et al. Neonatal and long-term consequences of fetal growth restriction[J]. Curr Pediatr Rev, 2018, 14(4): 212-218.
doi: 10.2174/1573396314666180712114531 |
[7] |
Bendix I, Miller SL, Winterhager E. Editorial: Causes and consequences of intrauterine growth restriction[J]. Front Endocrinol (Lausanne), 2020, 11: 205.
doi: 10.3389/fendo.2020.00205 |
[8] |
Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact[J]. Front Endocrinol (Lausanne), 2019, 10: 55.
doi: 10.3389/fendo.2019.00055 |
[9] |
Monier I, Blondel B, Ego A, et al. Does the presence of risk factors for fetal growth restriction increase the probability of antenatal detection? A French National Study[J]. Paediatr Perinat Epidemiol, 2016, 30(1): 46-55.
doi: 10.1111/ppe.12251 |
[10] | Ozdemir S, Sahin O, Acar Z, et al. Prediction of pregnancy complications with maternal biochemical markers used in Down syndrome screening[J]. Cureus, 2022, 14(3): e23115. |
[11] |
Boonpiam R, Wanapirak C, Sirichotiyakul S, et al. Quad test for fetal aneuploidy screening as a predictor of small-for-gestational age fetuses: a population-based study[J]. BMC Pregnancy Childbirth, 2020, 20(1): 621.
doi: 10.1186/s12884-020-03298-9 |
[12] | Ogino MH, Tadi P. Physiology, chorionic gonadotropin[M]. StatPearls. Treasure Island (FL): StatPearls Publishing, 2021. |
[13] |
Sirikunalai P, Wanapirak C, Sirichotiyakul S, et al. Associations between maternal serum free beta human chorionic gonadotropin (β-hCG) levels and adverse pregnancy outcomes[J]. J Obstet Gynaecol, 2016, 36(2): 178-182.
doi: 10.3109/01443615.2015.1036400 pmid: 26368010 |
[14] |
Genc S, Ozer H, Emeklioglu CN, et al. Relationship between extreme values of first trimester maternal pregnancy associated plasma protein-A, free-β-human chorionic gonadotropin, nuchal translucency and adverse pregnancy outcomes[J]. Taiwan J Obstet Gynecol, 2022, 61(3): 433-440.
doi: 10.1016/j.tjog.2022.02.043 pmid: 35595434 |
[15] |
Honarjoo M, Zarean E, Tarrahi MJ, et al. Role of pregnancy-associated plasma protein A (PAPP-A) and human-derived chorionic gonadotrophic hormone (free β-hCG) serum levels as a marker in predicting of small for gestational age (SGA): a cohort study[J]. J Res Med Sci, 2021, 26: 104.
doi: 10.4103/jrms.JRMS_560_20 pmid: 35126567 |
[16] | Huang J, Liu Y, Yang H, et al. The effect of serum β-human chorionic gonadotropin on pregnancy complications and adverse pregnancy outcomes: a systematic review and meta-analysis[J]. Comput Math Methods Med, 2022, 2022: 8315519. |
[17] |
Kiyokoba R, Uchiumi T, Yagi M, et al. Mitochondrial dysfunction-induced high hCG associated with develo-pment of fetal growth restriction and pre-eclampsia with fetal growth restriction[J]. Sci Rep, 2022, 12(1): 4056.
doi: 10.1038/s41598-022-07893-y pmid: 35260712 |
[18] |
Sharony R, Sharon-Weiner M, Kidron D, et al. The association between maternal serum first trimester free βhCG, second trimester intact hCG levels and foetal growth restriction and preeclampsia[J]. J Obstet Gynaecol, 2018, 38(3): 363-366.
doi: 10.1080/01443615.2017.1340441 pmid: 29385871 |
[19] | Parry S, Carper BA, Grobman WA, et al. Placental protein levels in maternal serum are associated with adverse pregnancy outcomes in nulliparous patients[J]. Am J Obstet Gynecol, 2022, 227(3): 497. |
[20] |
Boutin A, Gasse C, Demers S, et al. Does low PAPP-A predict adverse placenta-mediated outcomes in a low-risk nulliparous population? the Great Obstetrical Syndromes (GOS) Study[J]. J Obstet Gynaecol Can, 2018, 40(6): 663-668.
doi: S1701-2163(17)30762-4 pmid: 29274935 |
[21] |
Kantomaa T, Vääräsmäki M, Gissler M, et al. First trimester low maternal serum pregnancy associated plasma protein-A (PAPP-A) as a screening method for adverse pregnancy outcomes[J]. J Perinat Med, 2022. doi:10.1515/jpm-2022-0241.
doi: 10.1515/jpm-2022-0241 |
[22] |
He B, Hu C, Zhou Y. First-trimester screening for fetal growth restriction using Doppler color flow analysis of the uterine artery and serum PAPP-A levels in unselected pregnancies[J]. J Matern Fetal Neonatal Med, 2021, 34(23): 3857-3861.
doi: 10.1080/14767058.2019.1701646 |
[23] |
Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease[J]. Circulation, 2011, 123(24): 2856-2869.
doi: 10.1161/CIRCULATIONAHA.109.853127 pmid: 21690502 |
[24] |
Benton SJ, McCowan LM, Heazell AE, et al. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction[J]. Placenta, 2016, 42: 1-8.
doi: 10.1016/j.placenta.2016.03.010 pmid: 27238707 |
[25] |
Lesmes C, Gallo DM, Gonzalez R, et al. Prediction of small-for-gestational-age neonates: screening by maternal serum biochemical markers at 19-24 weeks[J]. Ultrasound Obstet Gynecol, 2015, 46(3): 341-349.
doi: 10.1002/uog.14899 pmid: 25969963 |
[26] |
Margossian A, Boisson-Gaudin C, Subtil F, et al. Intra-uterine growth restriction impact on maternal serum concentration of PlGF (placental growth factor): a case control study[J]. Gynecol Obstet Fertil, 2016, 44(1): 23-28.
doi: 10.1016/j.gyobfe.2015.11.005 pmid: 26725205 |
[27] |
Montanari L, Alfei A, Albonico G, et al. The impact of first-trimester serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein A on the diagnosis of fetal growth restriction and small for gestational age infant[J]. Fetal Diagn Ther, 2009, 25(1): 130-135.
doi: 10.1159/000207554 pmid: 19279389 |
[28] |
Shinar S, Tigert M, Agrawal S, et al. Placental growth factor as a diagnostic tool for placental mediated fetal growth restriction[J]. Pregnancy Hypertens, 2021, 25: 123-128.
doi: 10.1016/j.preghy.2021.05.023 pmid: 34119877 |
[29] |
Nuriyeva G, Kose S, Tuna G, et al. A prospective study on first trimester prediction of ischemic placental diseases[J]. Prenat Diagn, 2017, 37(4): 341-349.
doi: 10.1002/pd.5017 |
[30] |
Jeon HR, Jeong DH, Lee JY, et al. sFlt-1/PlGF ratio as a predictive and prognostic marker for preeclampsia[J]. J Obstet Gynaecol Res, 2021, 47(7): 2318-2323.
doi: 10.1111/jog.14815 |
[31] |
Bednarek-Jędrzejek M, Kwiatkowski S, Ksel-Hryciów J, et al. The sFlt-1/PlGF ratio values within the <38, 38-85 and >85 brackets as compared to perinatal outcomes[J]. J Perinat Med, 2019, 47(7): 732-740.
doi: 10.1515/jpm-2019-0019 pmid: 31339858 |
[32] |
Chen W, Wei Q, Liang Q, et al. Diagnostic capacity of sFlt-1/PlGF ratio in fetal growth restriction: a systematic review and meta-analysis[J]. Placenta, 2022, 127: 37-42.
doi: 10.1016/j.placenta.2022.07.020 pmid: 35952596 |
[33] |
Gaccioli F, Sovio U, Cook E, et al. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: a prospective cohort study[J]. Lancet Child Adolesc Health, 2018, 2(8): 569-581.
doi: S2352-4642(18)30129-9 pmid: 30119716 |
[34] |
Garcia-Manau P, Mendoza M, Bonacina E, et al. Soluble fms-like tyrosine kinase to placental growth factor ratio in different stages of early-onset fetal growth restriction and small for gestational age[J]. Acta Obstet Gynecol Scand, 2021, 100(1): 119-128.
doi: 10.1111/aogs.13978 |
[35] |
Rolnik DL, Wang Y, Hyett J, et al. Serum podocalyxin at 11-13 weeks of gestation in the prediction of small for gestational age neonates[J]. J Perinatol, 2019, 39(6): 784-790.
doi: 10.1038/s41372-019-0370-5 pmid: 30952947 |
[36] |
Behram M, Oğlak SC, Dağ İ. Circulating levels of Elabela in pregnant women complicated with intrauterine growth restriction[J]. J Gynecol Obstet Hum Reprod, 2021, 50(8): 102127.
doi: 10.1016/j.jogoh.2021.102127 |
[37] |
Birdir C, Fox L, Droste L, et al. MR-proANP, a cardio-vascular biomarker to predict late-onset preeclampsia and intrauterine growth restricted fetuses[J]. Pregnancy Hypertens, 2020, 22: 54-58.
doi: S2210-7789(20)30092-1 pmid: 32739718 |
[38] |
Moros G, Boutsikou T, Fotakis C, et al. Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics[J]. Sci Rep, 2021, 11(1): 7824.
doi: 10.1038/s41598-021-87323-7 pmid: 33837233 |
[39] |
Sovio U, Goulding N, McBride N, et al. A maternal serum metabolite ratio predicts fetal growth restriction at term[J]. Nat Med, 2020, 26(3): 348-353.
doi: 10.1038/s41591-020-0804-9 pmid: 32161413 |
[40] |
Lee C, Lee SM, Byun DJ, et al. Maternal signatures of cortisol in first trimester small-for-gestational age[J]. Reprod Sci, 2022, 29(5): 1498-1505.
doi: 10.1007/s43032-021-00822-w pmid: 35001327 |
[41] |
Tagliaferri S, Cepparulo P, Vinciguerra A, et al. miR-16-5p, miR-103-3p, and miR-27b-3p as early peripheral biomarkers of fetal growth restriction[J]. Front Pediatr, 2021, 9: 611112.
doi: 10.3389/fped.2021.611112 |
[42] |
Hromadnikova I, Kotlabova K, Krofta L. First-trimester screening for fetal growth restriction and small-for-gestational-age pregnancies without preeclampsia using cardiovascular disease-associated microRNA biomarkers[J]. Biomedicines, 2022, 10(3): 718.
doi: 10.3390/biomedicines10030718 |
[43] |
Whitehead CL, Walker SP, Tong S. Measuring circulating placental RNAs to non-invasively assess the placental transcriptome and to predict pregnancy complications[J]. Prenat Diagn, 2016, 36(11): 997-1008.
doi: 10.1002/pd.4934 |
[1] | 刘宏彦, 刘慧坤, 冷俊宏. 天津市新生儿听力及耳聋基因联合筛查结果分析[J]. 临床儿科杂志, 2023, 41(2): 146-149. |
[2] | 梁黎黎. 高苯丙氨酸血症遗传分型与诊治[J]. 临床儿科杂志, 2023, 41(2): 92-97. |
[3] | 卢晓燕, 陈绍红, 陈影影, 周文俊, 周婵, 宋燕, 李禄全, 唐文燕. 34周以下早产儿促甲状腺激素延迟升高及影响因素[J]. 临床儿科杂志, 2023, 41(10): 675-679. |
[4] | 胡海利, 李卫东, 王燕, 宋旺生, 马庆庆. 合肥市原发性肉碱缺乏症新生儿筛查及基因变异分析[J]. 临床儿科杂志, 2023, 41(10): 680-684. |
[5] | 王之欣, 陆丽娜, 王金玲, 颜伟慧, 蔡威, 王莹. 儿科营养筛查-评估工具在消化科患儿中的应用[J]. 临床儿科杂志, 2022, 40(5): 376-381. |
[6] | 王莹, 陆丽娜. 住院患儿营养筛查与评估工具应用现状[J]. 临床儿科杂志, 2022, 40(11): 801-806. |
[7] | 王伟青,李文杰,宋东坡,等. 短链酰基辅酶A 脱氢酶缺乏症患儿临床特点及基因变异分析[J]. 临床儿科杂志, 2020, 38(9): 687-. |
[8] | 季忆婷, 沈春, 范云, 张婷, 舒艳, 陈亮亮, 朱涛, 李斐, 徐明玉 . 象征性游戏在孤独症谱系障碍早期识别诊断中的作用[J]. 临床儿科杂志, 2018, 36(9): 674-. |
[9] | 潘诚, 邹小明, 陈刚, 王涛, 江先宇, 陈建勇 . 体格检查、脉搏血氧饱和度筛查和灌注指数 在新生儿先天性心脏病筛查中的作用[J]. 临床儿科杂志, 2018, 36(3): 166-. |
[10] | 王晗, 李廷栋, 郭小怡. 巨细胞病毒实验室检测方法研究进展及其用于 新生儿筛查的可行性[J]. 临床儿科杂志, 2018, 36(3): 221-. |
[11] | 付薇, 刘颖, 刘敬. 宫内生长受限对早产儿脑功能发育的影响[J]. 临床儿科杂志, 2017, 35(7): 525-. |
[12] | 夏超然, 黄英, 任兆瑞. 受试者工作特征曲线分析在地中海贫血筛查中的应用价值[J]. 临床儿科杂志, 2017, 35(5): 340-. |
[13] | 王秀利, 彭磊, 杨丹艳, 武娇 . 先天性甲状腺功能减低症筛查及治疗效果分析[J]. 临床儿科杂志, 2016, 34(8): 602-. |
[14] | 贾安琪, 吴军华, 郭岸英, 邱海燕. 经皮血氧饱和度筛查新生儿先天性心脏病监测时间段分析[J]. 临床儿科杂志, 2016, 34(5): 357-. |
[15] | 郑翠芳. 儿童克罗恩病肠内营养疗法的研究进展[J]. 临床儿科杂志, 2016, 34(4): 307-. |
|