临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (7): 481-485.doi: 10.12372/jcp.2023.23e0436
• 述评 • 下一篇
黄敏
收稿日期:
2023-05-18
出版日期:
2023-07-15
发布日期:
2023-07-05
基金资助:
HUANG Min
Received:
2023-05-18
Online:
2023-07-15
Published:
2023-07-05
摘要:
川崎病(KD)是一种主要累及全身中小血管的急性发热性疾病,好发于5岁以下儿童,冠状动脉病变是其主要并发症。目前KD已成为发达国家儿童获得性心脏病最常见的原因。不同于传统测序方法,单细胞测序技术在单细胞分辨率下对遗传信息进行测序,不仅能很好地解决细胞异质性问题,还能鉴定细胞亚群、寻找生物标志物、绘制细胞谱系。文章介绍了单细胞测序技术的发展及其在KD研究领域的应用现状,并对其发展前景进行展望。
黄敏. 单细胞测序技术在川崎病研究中的应用现状[J]. 临床儿科杂志, 2023, 41(7): 481-485.
HUANG Min. Application of single cell sequencing technology in Kawasaki disease research[J]. Journal of Clinical Pediatrics, 2023, 41(7): 481-485.
[1] |
Burns JC, Glodé MP. Kawasaki syndrome[J]. Lancet, 2004, 364(9433): 533-544.
doi: 10.1016/S0140-6736(04)16814-1 pmid: 15302199 |
[2] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association[J]. Circulation, 2017, 135(17): e927-e999. |
[3] |
Makino N, Nakamura Y, Yashiro M, et al. Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey[J]. J Epidemiol, 2015, 25(3): 239-245.
doi: 10.2188/jea.JE20140089 pmid: 25716368 |
[4] |
Huang MY, Gupta-Malhotra M, Huang JJ, et al. Acute-phase reactants and a supplemental diagnostic aid for Kawasaki disease[J]. Pediatr Cardiol, 2010, 31(8): 1209-1213.
doi: 10.1007/s00246-010-9801-y |
[5] |
Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490.
doi: 10.1038/nature14590 |
[6] |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[7] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[8] |
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 17: 77.
doi: 10.1186/s13059-016-0938-8 |
[9] |
Wang X, He Y, Zhang Q, et al. Direct comparative analyses of 10X genomics chromium and Smart-seq2[J]. Genomics Proteomics Bioinformatics, 2021, 19(2): 253-266.
doi: 10.1016/j.gpb.2020.02.005 |
[10] |
Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma[J]. Cell, 2019, 179(4): 829-845.
doi: S0092-8674(19)31119-5 pmid: 31675496 |
[11] |
Grindberg RV, Yee-Greenbaum JL, McConnell MJ, et al. RNA-sequencing from single nuclei[J]. Proc Natl Acad Sci USA, 2013, 110(49): 19802-19807.
doi: 10.1073/pnas.1319700110 pmid: 24248345 |
[12] |
Lacar B, Linker SB, Jaeger BN, et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation[J]. Nat Commun, 2016, 7: 11022.
doi: 10.1038/ncomms11022 pmid: 27090946 |
[13] |
Velmeshev D, Schirmer L, Jung D, et al. Single-cell genomics identifies cell type-specific molecular changes in autism[J]. Science, 2019, 364(6441): 685-689.
doi: 10.1126/science.aav8130 pmid: 31097668 |
[14] | Wolfien M, Galow AM, Müller P, et al. Single-nucleus sequencing of an entire mammalian heart: cell type composition and velocity[J]. Cells, 2020, 28, 9(2):318. |
[15] |
Wu H, Kirita Y, Donnelly EL, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1): 23-32.
doi: 10.1681/ASN.2018090912 pmid: 30510133 |
[16] |
Tosti L, Hang Y, Debnath O, et al. Single nucleus and in situ RNA-sequencing Reveal cell topographies in the human pancreas[J]. Gastroenterology, 2021, 160(4): 1330-1344.
doi: 10.1053/j.gastro.2020.11.010 pmid: 33212097 |
[17] |
KleinCA, Schmidt-Kittler O, Schardt JA, et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells[J]. Proc Natl Acad Sci USA, 1999, 96(8): 4494-4499.
pmid: 10200290 |
[18] |
Xu X, Hou Y, Yin XY, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor[J]. Cell, 2012, 148(5): 886-895.
doi: 10.1016/j.cell.2012.02.025 pmid: 22385958 |
[19] |
Wells D, Escudero T, Levy B, et al. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy[J]. Fertil Steril, 2002, 78(3): 543-549.
pmid: 12215331 |
[20] |
Shang W, Zhang YS, Shu MM, et al. Comprehensive chromosomal and mitochondrial copy number profiling in human IVF embryos[J]. Reprod Biomed Online, 2018, 36(1): 67-74.
doi: S1472-6483(17)30612-0 pmid: 29203383 |
[21] |
Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nat Methods, 2013, 10(12): 1213-1218.
doi: 10.1038/nmeth.2688 pmid: 24097267 |
[22] |
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues[J]. Nat Biotechnol, 2021, 39(7):825-835.
doi: 10.1038/s41587-021-00869-9 pmid: 33846645 |
[23] |
Kong SL, Li H, Tai JA, et al. Concurrent single-cell RNA and targeted DNA sequencing on an automated platform for comeasurement of genomic and transcriptomic signatures[J]. Clin Chem, 2019, 65(2): 272-281.
doi: 10.1373/clinchem.2018.295717 pmid: 30523199 |
[24] |
Rowley AH. Kawasaki disease: novel insights into etiology and genetic susceptibility[J]. Annu Rev Med, 2011, 62: 69-77.
doi: 10.1146/annurev-med-042409-151944 pmid: 20690826 |
[25] |
Kuo HC, Chang WC. Genetic polymorphisms in Kawasaki disease[J]. Acta Pharmacol Sin, 2011, 32(10): 1193-1198.
doi: 10.1038/aps.2011.93 |
[26] |
Popper SJ, Shimizu C, Shike H, et al. Gene-expression patterns reveal underlying biological processes in Kawasaki disease[J]. Genome Biol. 2007; 8(12):R261.
doi: 10.1186/gb-2007-8-12-r261 pmid: 18067656 |
[27] | Hoang LT, Shimizu C, Ling L, et al. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease[J]. Genome Med. 2014 Nov 20;6(11):541. |
[28] |
Lehman TJ, Walker SM, Mahnovski V, et al. Coronary arteritis inmice following the systemic injection of group B Lactobacillus casei cell walls in aqueous suspension[J]. Arthritis Rheum, 1985, 28(6): 652-659.
doi: 10.1002/(ISSN)1529-0131 |
[29] |
Murata H. Experimental candida-induced arteritis in mice. Relation to arteritis in the mucocutaneous lymph node syndrome[J]. Microbiol Immunol, 1979, 23(9): 825-831.
pmid: 395420 |
[30] |
Nagi-Miura N, Shingo Y, Adachi Y, et al. Induction of coronary arteritis with administration of CAWS (Candida albicans water-soluble fraction) depending on mouse strains[J]. Immunopharmacol Immunotoxicol, 2004, 26(4): 527-543.
doi: 10.1081/IPH-200042295 |
[31] |
Alphonse MP, Duong TT, Shumitzu C, et al. Inositol-triphosphate 3-kinase C mediates inflammasome activation andtreatment response in Kawasaki disease[J]. J Immunol, 2016, 197(9): 3481-3489.
pmid: 27694492 |
[32] | Porritt RA, Zemmour D, Abe M, et al. NLRP3 inflam-masome mediates immune-stromal interactions in vasculitis[J]. Circ Res, 2021, 129(9): e183-e200. |
[33] |
Marek-Iannucci S, Yildirim AD, Hamid SM, et al. Targeting IRE1 endoribonuclease activity alleviates cardiovascular lesions in a murine model of Kawasaki disease vasculitis[J]. JCI Insight, 2022, 7(6): e157203.
doi: 10.1172/jci.insight.157203 |
[34] |
Geng Z, Tao Y, Zheng F, et al. Altered monocyte subsets in Kawasaki disease revealed by single-cell RNA-sequencing[J]. J Inflamm Res, 2021, 14: 885-896.
doi: 10.2147/JIR.S293993 |
[35] |
Fan X, Zhou Y, Guo X, et al. Utilizing single-cell RNA sequencing for analyzing the characteristics of PBMC in patients with Kawasaki disease[J]. BMC Pediatr, 2021, 21(1): 277.
doi: 10.1186/s12887-021-02754-5 pmid: 34126969 |
[36] |
Wang Z, Xie L, Ding G, et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients[J]. Nat Commun, 2021, 12(1): 5444.
doi: 10.1038/s41467-021-25771-5 pmid: 34521850 |
[1] | 郝胜, 黄敏. 儿童川崎病相关巨噬细胞活化综合征的临床诊治[J]. 临床儿科杂志, 2023, 41(7): 486-491. |
[2] | 刘芳, 林怡翔. 川崎病严重冠状动脉病变的长期管理[J]. 临床儿科杂志, 2023, 41(7): 492-497. |
[3] | 周翠臻, 宋思瑞, 陈丽琴, 黄敏. 川崎病合并冠状动脉瘤危险因素分析[J]. 临床儿科杂志, 2023, 41(7): 498-501. |
[4] | 徐丹, 潘冬宁, 李亚琴. 川崎病患儿血清五聚蛋白-3水平对静脉注射免疫球蛋白抵抗的影响和预测价值[J]. 临床儿科杂志, 2023, 41(7): 502-506. |
[5] | 何方园, 何学华, 袁勇华, 朱柳蓉, 吴意, 夏晓辉. 川崎病急性期血脂与年龄、冠状动脉病变及严重程度的关系[J]. 临床儿科杂志, 2023, 41(6): 455-458. |
[6] | 邱佳韵(综述), 周国平(审校). 川崎病冠状动脉损伤机制免疫遗传研究进展[J]. 临床儿科杂志, 2023, 41(1): 66-72. |
[7] | 孙蕊, 曹爱梅, 李晓惠, 袁越, 张明明, 李丹, 石琳. 基于超声心动图评估儿童川崎病冠状动脉异常的方法分析[J]. 临床儿科杂志, 2022, 40(9): 690-695. |
[8] | 黄玉娟, 黄敏. 川崎病静脉注射丙种球蛋白无反应预测模型研究现状[J]. 临床儿科杂志, 2022, 40(7): 481-487. |
[9] | 王娜娜, 孟丽君, 张欠文, 张帆, 侯淼, 陈烨, 王波, 严文华, 吕海涛, 孙凌, 黄洁. 川崎病患儿树突状细胞亚群变化及意义初探[J]. 临床儿科杂志, 2022, 40(7): 500-504. |
[10] | 刘 蕾,宋晓翔,封其华. 川崎病合并关节炎 2 例报告并文献复习[J]. 临床儿科杂志, 2022, 40(1): 58-. |
[11] | 高微微,邹映雪. 川崎病休克综合征早期识别与诊治研究进展[J]. 临床儿科杂志, 2021, 39(3): 237-. |
[12] | 邓海梅, 闵丽, 吴瑾志, 等. 川崎病合并胰腺炎和低T3综合征1例报告[J]. 临床儿科杂志, 2021, 39(10): 733-. |
[13] | 张海洋,罗黎力,李德渊,等. 川崎休克综合征致急性肾损伤1例报告[J]. 临床儿科杂志, 2021, 39(10): 736-. |
[14] | 王亮. 类川崎病——儿童多系统炎症综合征诊疗相关研究现状[J]. 临床儿科杂志, 2021, 39(10): 792-. |
[15] | 王复娟,吴良霞. 川崎病冠状动脉损害相关危险因素分析[J]. 临床儿科杂志, 2020, 38(7): 481-. |
|