临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (7): 549-555.doi: 10.12372/jcp.2023.22e0397
庄严 综述, 黄瑞文 审校
收稿日期:
2022-03-23
出版日期:
2023-07-15
发布日期:
2023-07-05
基金资助:
Reviewer: ZHUANG Yan, Reviser: HUANG Ruiwen
Received:
2022-03-23
Online:
2023-07-15
Published:
2023-07-05
摘要:
极早发型炎症性肠病(very early onset inflammatory bowel disease,VEO-IBD)是指6岁以前发病的IBD患者,近年来其发病率和患病率上升迅速。随着基因测序技术和平台的发展,发现VEO-IBD的发病与多种参与免疫途径的单基因变异有关,其是否是VEO-IBD发病的主要原因尚存争议,但明确具体变异类型可一定程度指导特定治疗。文章介绍基因变异和环境暴露在VEO-IBD发病中可能的机制途径,其中重点从四个方面阐述与VEO-IBD相关的单基因变异,为早期诊断,精准治疗提供方向。
庄严, 黄瑞文. 极早发型炎症性肠病发病机制研究进展[J]. 临床儿科杂志, 2023, 41(7): 549-555.
ZHUANG Yan, HUANG Ruiwen. Advances in the pathogenesis of very early onset inflammatory bowel disease[J]. Journal of Clinical Pediatrics, 2023, 41(7): 549-555.
[1] |
Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124.
doi: 10.1038/nature11582 |
[2] |
Uhlig HH, Schwerd T, Koletzko S, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease[J]. Gastroenterology, 2014, 147(5): 990-1007.
doi: 10.1053/j.gastro.2014.07.023 pmid: 25058236 |
[3] | Benchimol EI, Fortinsky KJ, Gozdyra P, et al. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends[J]. Inflammation Bowel Dis, 2011, 17 (1): 423-439. |
[4] |
Doecke JD, Simms LA, Zhao ZZ, et al. Genetic susceptibility in IBD: overlap between ulcerative colitis and Crohn's disease[J]. Inflamm Bowel Dis, 2013, 19(2): 240-245.
doi: 10.1097/MIB.0b013e3182810041 pmid: 23348120 |
[5] |
Yang SK, Hong M, Zhao W, et al. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations[J]. Gut, 2014, 63(1): 80-87.
doi: 10.1136/gutjnl-2013-305193 |
[6] |
Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee[J]. J Clin Immunol, 2020, 40(1): 24-64.
doi: 10.1007/s10875-019-00737-x pmid: 31953710 |
[7] |
Fang YH, Luo YY, Yu JD, et al. Phenotypic and genotypic characterization of inflammatory bowel disease in children under six years of age in China[J]. World J Gastroenterol, 2018, 24(9): 1035-1045.
doi: 10.3748/wjg.v24.i9.1035 |
[8] | Ouahed J, Spencer E, Kotlarz D, et al. Very early onset inflammatory bowel disease: a clinical approach with a focus on the role of genetics and underlying immune deficiencies[J]. Inflammation Bowel Dis, 2020, 26(6): 820-842. |
[9] |
Kelsen JR, Sullivan KE, Rabizadeh S, et al. North American society for pediatric gastroenterology, hepatology, and nutrition position paper on the evaluation and management for patients with very early-onset inflammatory bowel disease[J]. J Pediatr Gastroenterol Nutr, 2020, 70(3): 389-403.
doi: 10.1097/MPG.0000000000002567 |
[10] |
Karamchandani-Patel G, Hanson EP, Saltzman R, et al. Congenital alterations of NEMO glutamic acid 223 result in hypohidrotic ectodermal dysplasia and immunodeficiency with normal serum IgG levels[J]. Ann Allergy Asthma Immunol, 2011, 107(1): 50-56.
doi: 10.1016/j.anai.2011.03.009 |
[11] |
Blaydon DC, Biancheri P, Di WL, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion[J]. N Engl J Med, 2011, 365(16): 1502-1508.
doi: 10.1056/NEJMoa1100721 |
[12] |
Avitzur Y, Guo C, Mastropaolo LA, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease[J]. Gastroenterology, 2014, 146 (4): 1028-1039.
doi: 10.1053/j.gastro.2014.01.015 pmid: 24417819 |
[13] |
Zimmer KP, Schumann H, Mecklenbeck S, et al. Esophageal stenosis in childhood: dystrophic epidermolysis bullosa without skin blistering due to collagen VII mutations[J]. Gastroenterology, 2002, 122(1): 220-225.
doi: 10.1053/gast.2002.30428 |
[14] | Ussar S, Moser M, Widmaier M, et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction[J]. PloS Genet, 2008, 4(12): e1000289. |
[15] |
Naviglio S, Arrigo S, Martelossi S, et al. Severe Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling[J]. J Crohns Colitis, 2014, 8(8): 770-774.
doi: 10.1016/j.crohns.2014.01.013 pmid: 24486179 |
[16] |
Fiskerstrand T, Arshad N, Haukanes BI, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation[J]. N Engl J Med, 2012, 366(17): 1586-1595.
doi: 10.1056/NEJMoa1110132 |
[17] |
Khoshnevisan R, Anderson M, Babcock S, et al. NOX1 regulates collective and planktonic cell migration: insights from patients with pediatric-onset IBD and NOX1 deficiency[J]. Inflamm Bowel Dis, 2020, 26(8): 1166-1176.
doi: 10.1093/ibd/izaa017 pmid: 32064493 |
[18] |
Anjani G, Vignesh P, Joshi V, et al. Recent advances in chronic granulomatous disease[J]. Genes Dis, 2020, 7 (1): 84-92.
doi: 10.1016/j.gendis.2019.07.010 pmid: 32181279 |
[19] |
Henrickson SE, Jongco AM, Thomsen KF, et al. Noninfectious manifestations and complications of chronic granulomatous disease[J]. J Pediatr Infect Dis Soc, 2018, 7(suppl_1): S18-S24.
doi: 10.1093/jpids/piy014 |
[20] |
van de Vijver E, Maddalena A, Sanal O, et al. Hematologically important mutations: leukocyte adhesion deficiency (first update)[J]. Blood Cells Mol Dis, 2012, 48(1): 53-61.
doi: 10.1016/j.bcmd.2011.10.004 |
[21] |
Li QQ, Zhang HH, Dai SX. New insights and advances in pathogenesis and treatment of very early onset inflammatory bowel disease[J]. Front Pediatr, 2022, 10: 714054.
doi: 10.3389/fped.2022.714054 |
[22] |
Rohr J, Pannicke U, Doring M, et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency[J]. J Clin Immunol, 2010, 30(2): 314-320.
doi: 10.1007/s10875-009-9349-x pmid: 19967552 |
[23] |
Felgentreff K, Perez-Becker R, Speckmann C, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency[J]. Clin Immunol, 2011, 141(1): 73-82.
doi: 10.1016/j.clim.2011.05.007 pmid: 21664875 |
[24] |
Magg T, Shcherbina A, Arslan D, et al. CARMIL2 deficiency presenting as very early onset inflammatory bowel disease[J]. Inflamm Bowel Dis, 2019, 25(11): 1788-1795.
doi: 10.1093/ibd/izz103 pmid: 31115454 |
[25] | Schwab C, Gabrysch A, Olbrich P, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects[J]. J Allergy Clin Immunol, 2018, 142(6): 193219-46. |
[26] |
Schepp J, Chou J, Skrabl-Baumgartner A, et al. 14 years after discovery: clinical follow-up on 15 patients with inducible co-stimulator deficiency[J]. Front Immunol, 2017, 8: 964.
doi: 10.3389/fimmu.2017.00964 |
[27] |
Maekawa K, Yamada M, Okura Y, et al. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene[J]. Blood Cells Mol Dis, 2010, 44 (4): 300-304.
doi: 10.1016/j.bcmd.2010.01.004 |
[28] |
Catucci M, Castiello MC, Pala F, et al. Autoimmunity in Wiskott-Aldrich Syndrome: An Unsolved Enigma[J]. Front Immunol, 2012, 3: 209.
doi: 10.3389/fimmu.2012.00209 pmid: 22826711 |
[29] |
Chan AY, Torgerson TR. Primary immune regulatory disorders: a growing universe of immune dysregulation[J]. Curr Opin Allergy Clin Immunol, 2020, 20(6): 582-590.
doi: 10.1097/ACI.0000000000000689 |
[30] | van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3[J]. Clin Dev Immunol, 2007, 2007: 89017. |
[31] |
Gambineri E, Ciullini Mannurita S, Hagin D, et al. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-Linked (Ipex) syndrome[J]. Front Immunol, 2018, 9: 2411.
doi: 10.3389/fimmu.2018.02411 pmid: 30443250 |
[32] |
Caudy AA, Reddy ST, Chatila T, et al. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes[J]. J Allergy Clin Immunol, 2007, 119(2): 482-487.
doi: 10.1016/j.jaci.2006.10.007 |
[33] |
Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor[J]. N Engl J Med, 2009, 361(21): 2033-2045.
doi: 10.1056/NEJMoa0907206 |
[34] | 李朝晖, 康文清, 张耀东, 等. 新生儿炎症性肠2例报告及文献复习[J]. 临床儿科杂志, 2018, 36(2): 121-125. |
[35] | Zhang ZZ, Zhang Y, He T, et al. Homozygous IL37 mutation associated with infantile inflammatory bowel disease[J]. Proc Natl Acad Sci USA, 2021, 118(10): e2009217118. |
[36] |
Pedersen J, LaCasse EC, Seidelin JB, et al. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation[J]. Trends Mol Med, 2014, 20(11): 652-665.
doi: 10.1016/j.molmed.2014.09.006 pmid: 25282548 |
[37] |
Latour S, Aguilar C. XIAP deficiency syndrome in humans[J]. Semin Cell Dev Biol, 2015, 39: 115-123.
doi: 10.1016/j.semcdb.2015.01.015 pmid: 25666262 |
[38] |
Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation[J]. Nat Genet, 2014, 46(10): 1135-1139.
doi: 10.1038/ng.3066 pmid: 25217960 |
[39] |
van der Burgh R, Ter Haar NM, Boes ML, et al. Mevalonate kinase deficiency, a metabolic autoinflammatory disease[J]. Clin Immunol, 2013, 147(3): 197-206.
doi: 10.1016/j.clim.2012.09.011 pmid: 23110805 |
[40] |
Li Q, Lee CH, Peters LA, Mastropaolo LA, et al. Variants in TRIM22 that affect NOD2 signaling are associated with very- early-onset inflammatory bowel disease[J]. Gastroenterology, 2016, 150 (5): 1196-1207.
doi: 10.1053/j.gastro.2016.01.031 |
[41] |
Cananzi M, Wohler E, Marzollo A, et al. IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease[J]. Hum Genet, 2021, 140(9): 1299-1312.
doi: 10.1007/s00439-021-02300-4 pmid: 34185153 |
[42] |
Wang L, Aschenbrenner D, Zeng Z, et al. Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice[J]. Nat Genet, 2021, 53(4): 500-510.
doi: 10.1038/s41588-021-00803-4 pmid: 33782605 |
[43] | Serra EG, Schwerd T, Moutsianas L, et al. Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease[J]. Nat Commun, 2020, 21; 11(1): 995. |
[44] | Ek WE, D'Amato M, Halfvarson J. the history of genetics in inflammatory bowel disease[J]. Ann Gastroenterol, 2014, 27: 294-303. |
[45] |
Parian A, Limketkai B, Koh J, et al. Appendectomy does not decrease the risk of future colectomy in UC: results from a large cohort and meta-analysis[J]. Gut, 2017, 66(8): 1390-1397.
doi: 10.1136/gutjnl-2016-311550 pmid: 27196594 |
[46] |
Ungaro R, Bernstein CN, Gearry R, et al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis[J]. Am J Gastroenterol. 2014 Nov; 109(11): 1728-1738.
doi: 10.1038/ajg.2014.246 pmid: 25223575 |
[47] |
Örtqvist AK, Lundholm C, Halfvarson J, et al. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study[J]. Gut, 2019, 68(2): 218-225.
doi: 10.1136/gutjnl-2017-314352 pmid: 29321166 |
[48] |
Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn's disease[J]. Cell Host Microbe, 2014, 15(3): 382-392.
doi: 10.1016/j.chom.2014.02.005 pmid: 24629344 |
[49] |
Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3): 470-480.
doi: 10.1016/j.cell.2012.07.008 pmid: 22863002 |
[50] |
Rautava S, Collado MC, Salminen S, et al. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial[J]. Neonatology, 2012, 102(3): 178-184.
pmid: 22776980 |
[51] |
Nogacka A, Salazar N, Suárez M, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates[J]. Microbiome, 2017, 5(1): 93.
doi: 10.1186/s40168-017-0313-3 pmid: 28789705 |
[52] |
Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease[J]. Nat Microbiol, 2017, 2: 17004.
doi: 10.1038/nmicrobiol.2017.4 pmid: 28191884 |
[53] |
Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease[J]. Gut, 2018, 67(1): 108-119.
doi: 10.1136/gutjnl-2016-312135 pmid: 27802154 |
[54] | 薛爱娟, 苗士建, 孙桦, 等. IL10RA基因突变致极早发型炎症性肠病患儿肠道菌群特征横断面调查[J]. 中国循证儿科杂志, 2018, 13(3): 200-204. |
[55] | Maraki S, Papadakis IS. Rothia mucilaginosa pneumonia: a literature review[J]. Infect Dis (Lond), 2015, 47(3): 125-129. |
[56] | Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability[J]. Sci Transl Med, 2016, 8(343): 343ra81. |
[1] | 季涛云. 发育性癫痫性脑病基因治疗展望[J]. 临床儿科杂志, 2023, 41(9): 650-655. |
[2] | 卓木清, 李小晶, 彭炳蔚, 朱海霞, 田杨, 郑可鲁, 高媛媛, 吴文晓, 吴汶霖, 陈宗宗, 陈文雄, 曹彬彬. 儿童线粒体脑肌病临床特点分析[J]. 临床儿科杂志, 2023, 41(9): 661-667. |
[3] | 欧跃徐, 段远辉, 曹洁, 李洁玲. BRAF基因变异8例临床分析[J]. 临床儿科杂志, 2023, 41(9): 697-702. |
[4] | 杨智博, 刘力. 基因测序技术在单基因狼疮精准诊断和机制研究中的应用现状[J]. 临床儿科杂志, 2023, 41(9): 715-720. |
[5] | 秦涛, 许红梅. 儿童常见侵袭性肺部真菌病免疫机制和临床特点[J]. 临床儿科杂志, 2023, 41(8): 566-570. |
[6] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[7] | 唐雅楠, 叶贤涛, 顾学范, 余永国, 肖冰, 孙昱. Menke-Hennekam综合征表型及基因型分析[J]. 临床儿科杂志, 2023, 41(8): 613-617. |
[8] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
[9] | 张文妍, 姚子明, 张学军, 张耀东, 王凌飞, 胡旭昀, 郝婵娟. TRPV4基因变异引起先天性骨病遗传学分析[J]. 临床儿科杂志, 2023, 41(7): 530-536. |
[10] | 唐怡珺, 张倩文, 王依柔, 陈瑶, 李辛, 李娟, 王剑, 王秀敏. Kallmann综合征临床特点及基因型分析[J]. 临床儿科杂志, 2023, 41(7): 537-542. |
[11] | 万瑞平, 黄小霏, 叶星光, 吴燕玲, 戴杰民, 刘志刚. SETBP1基因单倍剂量不足发育障碍的临床特征与遗传分析[J]. 临床儿科杂志, 2023, 41(6): 450-454. |
[12] | 黄丽莲, 陈洁琳, 李英乔, 庞夏玲, 谭杰, 黄惠萍, 冯燕华, 覃敏, 罗静思. 新生儿期起病慢性肉芽肿病临床与基因分析[J]. 临床儿科杂志, 2023, 41(6): 464-469. |
[13] | 李艳君, 张永红, 陈妍, 邱文娟, 韩连书, 朱天闻. 早发型极长链酰基辅酶A脱氢酶缺乏症3例临床及遗传学分析[J]. 临床儿科杂志, 2023, 41(5): 381-386. |
[14] | 李鹤婷, 罗小青, 江军. CDKL5基因相关早发性癫痫性脑病临床及脑电图特点[J]. 临床儿科杂志, 2023, 41(4): 272-277. |
[15] | 常国营, 凌诗颖, 邱文娟, 张惠文, 梁黎黎, 顾学范, 韩连书. 3-羟基-3甲基戊二酰辅酶A裂解酶缺乏症临床特点及基因变异分析[J]. 临床儿科杂志, 2023, 41(4): 278-283. |
|