[1] |
Osman A, Halling C, Crume M, et al. Meconium aspiration syndrome: a comprehensive review[J]. J Perinatol, 2023, 43(10): 1211-1221.
doi: 10.1038/s41372-023-01708-2
pmid: 37543651
|
[2] |
Olicker AL, Raffay TM, Ryan RM. Neonatal respiratory distress secondary to meconium aspiration syndrome[J]. Children (Basel), 2021, 8(3): 246.
|
[3] |
Rao P, Charki S, Aradhya AS, et al. Prediction score for prolonged hospital stay in meconium aspiration syndrome: A multicentric collaborative cohort of south India[J]. Pediatr Pulmonol, 2022, 57(10): 2383-2389.
|
[4] |
Choi BH, Verma S, Cicalese E, et al. Morbidity of conversion from venovenous to venoarterial ECMO in neonates with meconium aspiration or persistent pulmonary hypertension[J]. J Pediatr Surg, 2021, 56(3): 459-464.
doi: 10.1016/j.jpedsurg.2020.09.053
pmid: 33645507
|
[5] |
Bianzina S, Singh Y, Iacobelli R, et al. Use of point-of-care ultrasound (POCUS) to monitor neonatal and pediatric extracorporeal life support[J]. Eur J Pediatr, 2024, 183(4): 1509-1524.
|
[6] |
邵肖梅, 叶鸿瑁, 丘小汕, 等. 实用新生儿学[M]. 第四版. 北京: 人民卫生出版社, 2011.
|
[7] |
中华医学会儿科学分会围产医学专业委员会, 中国医师协会新生儿科医师分会超声专业委员会, 中国医药教育协会超声医学专业委员会重症超声学组, 等. 新生儿肺脏疾病超声诊断指南[J]. 中国当代儿科杂志, 2019, 21(2): 105-113.
|
[8] |
邓超, 卫艳, 李贤英, 等. 血尿酸、B型脑钠肽及中性粒细胞/淋巴细胞比值水平在慢性阻塞性肺疾病并发肺动脉高压中的表达及其意义[J]. 实用医院临床杂志, 2022, 19(4): 159-161.
|
[9] |
Aleem S, Robbins C, Murphy B, et al. The use of supplemental hydrocortisone in the management of persistent pulmonary hypertension of the newborn[J]. J Perinatol, 2021, 41(4): 794-800.
doi: 10.1038/s41372-021-00943-9
pmid: 33589734
|
[10] |
Chen IL, Chen HL. New developments in neonatal respiratory management[J]. Pediatr Neonatol, 2022, 63(4): 341-347.
doi: 10.1016/j.pedneo.2022.02.002
pmid: 35382987
|
[11] |
Sangsari R, Saeedi M, Maddah M, et al. Weaning and extubation from neonatal mechanical ventilation: an evidenced-based review[J]. BMC Pulm Med, 2022, 22(1): 421.
|
[12] |
Abiramalatha T, Ramaswamy VV, Bandyopadhyay T, et al. Interventions to prevent bronchopulmonary dysplasia in preterm neonates: an umbrella review of systematic reviews and meta-analyses[J]. JAMA Pediatr, 2022, 176(5): 502-516.
doi: 10.1001/jamapediatrics.2021.6619
pmid: 35226067
|
[13] |
Zhu X, Qi H, Feng Z, et al. Noninvasive high-frequency oscillatory ventilation vs nasal continuous positive airway pressure vs nasal intermittent positive pressure ventilation as postextubation support for preterm neonates in China: a randomized clinical trial[J]. JAMA Pediatr, 2022, 176(6): 551-559.
doi: 10.1001/jamapediatrics.2022.0710
pmid: 35467744
|
[14] |
Sánchez-Luna M, González-Pacheco N, Santos-González M, et al. High-frequency ventilation[J]. Clin Perinatol, 2021, 48(4): 855-868.
doi: 10.1016/j.clp.2021.08.003
pmid: 34774213
|
[15] |
Ramanathan R, Biniwale M. Noninvasive ventilation[J]. Crit Care Nurs Clin North Am, 2024, 36(1): 51-67.
|
[16] |
Mongodi S, De Luca D, Colombo A, et al. Quantitative lung ultrasound: technical aspects and clinical applications[J]. Anesthesiology, 2021, 134(6): 949-965.
doi: 10.1097/ALN.0000000000003757
pmid: 33819339
|
[17] |
Dumpa V, Avulakunta I, Bhandari V. Respiratory management in the premature neonate[J]. Expert Rev Respir Med, 2023, 17(2): 155-170.
|
[18] |
Blokpoel RGT, Burgerhof JGM, Markhorst DG, et al. Trends in pediatric patient-ventilator asynchrony during invasive mechanical ventilation[J]. Pediatr Crit Care Med, 2021, 22(11): 993-997.
|
[19] |
Sim JK, Choi J, Oh JY, et al. Cardiac dysfunction is not associated with increased reintubation rate in patients treated with post-extubation high-flow nasal cannula[J]. Tuberc Respir Dis (Seoul), 2022, 85(4): 332-340.
|
[20] |
Lu P, Lu X, Li B, et al. High-sensitivity cardiac troponin T in prediction and diagnosis of early postoperative hypoxemia after off-pump coronary artery bypass grafting[J]. J Cardiovasc Dev Dis, 2022, 9(12): 416.
|