临床儿科杂志 ›› 2024, Vol. 42 ›› Issue (5): 461-466.doi: 10.12372/jcp.2024.23e0201
陈少甜 综述, 杨男 审校
收稿日期:
2023-03-14
出版日期:
2024-05-15
发布日期:
2024-05-10
基金资助:
Reviewer: CHEN Shaotian, Reviser: YANG Nan
Received:
2023-03-14
Online:
2024-05-15
Published:
2024-05-10
摘要:
哮喘是最常见的慢性呼吸系统疾病之一,累及全年龄段,其患病率与社会医疗费用逐年升高。近年来大量研究证实,脂质分子作为调节多种细胞生物过程强有力的信号分子,通过对哮喘患者气道不同细胞的调节,影响疾病的发生发展。因此,本文从近年来不断发展的脂质组学与哮喘的研究出发,总结哮喘中潜在的代谢生物标志物,探讨脂质代谢在哮喘发病过程对不同细胞发挥的作用机制,为哮喘的个性化治疗提供思路。
陈少甜, 杨男. 脂质代谢在哮喘中作用机制的研究进展[J]. 临床儿科杂志, 2024, 42(5): 461-466.
CHEN Shaotian, YANG Nan. Research progress on mechanism of lipid metabolism in asthma[J]. Journal of Clinical Pediatrics, 2024, 42(5): 461-466.
[1] |
Porsbjerg C, Melén E, Lehtimäki L, et al. Asthma[J]. Lancet, 2023, 401(10379): 858-873.
doi: 10.1016/S0140-6736(22)02125-0 |
[2] |
García-Marcos L, Asher MI, Pearce N, et al. The burden of asthma, hay fever and eczema in children in 25 countries: GAN Phase I study[J]. Eur Respir J, 2022, 60(3): 2102866.
doi: 10.1183/13993003.02866-2021 |
[3] |
Mortimer K, Lesosky M, García-Marcos L, et al. The burden of asthma, hay fever and eczema in adults in 17 countries: GAN Phase I study[J]. Eur Respir J, 2022, 60(3): 2102865.
doi: 10.1183/13993003.02865-2021 |
[4] |
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15.
doi: 10.1007/s00281-020-00785-1 pmid: 32020334 |
[5] |
Köberlin MS, Snijder B, Heinz LX, et al. A conserved circular network of coregulated lipids modulates innate immune responses[J]. Cell, 2015, 162(1): 170-183.
doi: 10.1016/j.cell.2015.05.051 pmid: 26095250 |
[6] |
Sakae H, Ogiso Y, Matsuda M, et al. Ceramide nanoliposomes as potential therapeutic reagents for asthma[J]. Cells, 2023, 12(4): 591.
doi: 10.3390/cells12040591 |
[7] |
Wang R, Li B, Lam SM, et al. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression[J]. J Genet Genomics, 2020, 47(2): 69-83.
doi: S1673-8527(19)30200-0 pmid: 32178981 |
[8] | Jiang T, Dai L, Li P, et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(2): 158853. |
[9] |
Wang S, Tang K, Lu Y, et al. Revealing the role of glycerophospholipid metabolism in asthma through plasma lipidomics[J]. Clin Chim Acta, 2021, 513: 34-42.
doi: 10.1016/j.cca.2020.11.026 pmid: 33307061 |
[10] |
Delgado-Dolset MI, Obeso D, Rodríguez-Coira J, et al. Understanding uncontrolled severe allergic asthma by integration of omic and clinical data[J]. Allergy, 2022, 77(6): 1772-1785.
doi: 10.1111/all.v77.6 |
[11] |
Daley-Yates P, Keppler B, Brealey N, et al. Inhaled glucocorticoid-induced metabolome changes in asthma[J]. Eur J Endocrinol, 2022, 187(3): 413-427.
doi: 10.1530/EJE-21-0912 pmid: 35900313 |
[12] |
Daley-Yates P, Keppler B, Baines A, et al. Metabolomic changes related to airway inflammation, asthma pathogenesis and systemic activity following inhaled fluticasone furoate/vilanterol: a randomized controlled trial[J]. Respir Res, 2022, 23(1): 258.
doi: 10.1186/s12931-022-02164-w |
[13] |
Papamichael MM, Katsardis C, Tsoukalas D, et al. Plasma lipid biomarkers in relation to BMI, lung function, and airway inflammation in pediatric asthma[J]. Metabolomics, 2021, 17(7): 63.
doi: 10.1007/s11306-021-01811-5 pmid: 34175992 |
[14] |
Rago D, Pedersen CT, Huang M, et al. Characteristics and mechanisms of a sphingolipid-associated childhood asthma endotype[J]. Am J Respir Crit Care Med, 2021, 203(7): 853-863.
doi: 10.1164/rccm.202008-3206OC |
[15] |
Zheng P, Bian X, Zhai Y, et al. Metabolomics reveals a correlation between hydroxyeicosatetraenoic acids and allergic asthma: Evidence from three years' immunotherapy[J]. Pediatr Allergy Immunol, 2021, 32(8): 1654-1662.
doi: 10.1111/pai.v32.8 |
[16] |
Chang-Chien J, Huang HY, Tsai HJ, et al. Metabolomic differences of exhaled breath condensate among children with and without asthma[J]. Pediatr Allergy Immunol, 2021, 32(2): 264-272.
doi: 10.1111/pai.v32.2 |
[17] |
Kelly RS, Mendez KM, Huang M, et al. Metabo-endotypes of asthma reveal differences in lung function: discovery and validation in two TOPMed cohorts[J]. Am J Respir Crit Care Med, 2022, 205(3): 288-299.
doi: 10.1164/rccm.202105-1268OC |
[18] | Ualiyeva S, Lemire E, Aviles EC, et al. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation[J]. Sci Immunol, 2021, 6(66): eabj0474. |
[19] |
Esteves P, Blanc L, Celle A, et al. Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodelling[J]. Eur Respir J, 2021, 58(5): 2004252.
doi: 10.1183/13993003.04252-2020 |
[20] |
Tibbitt CA, Stark JM, Martens L, et al. Single-cell RNA sequencing of the T helper cell response to house dust mites defines a distinct gene expression signature in airway Th2 cells[J]. Immunity, 2019, 51(1): 169-184.
doi: S1074-7613(19)30234-1 pmid: 31231035 |
[21] | Chen W, Luo J, Ye Y, et al. The roles of type 2 cytotoxic T cells in inflammation, tissue remodeling, and prostaglandin (PG) D2 production are attenuated by PGD2 receptor 2 antagonism[J]. J Immunol, 2021, 206(11): 2714-2724. |
[22] | Norlander AE, Bloodworth MH, Toki S, et al. Prostaglandin I2 signaling licenses Treg suppressive function and prevents pathogenic reprogramming[J]. J Clin Invest, 2021, 131(7): e140690. |
[23] |
Draijer C, Florez-Sampedro L, Reker-Smit C, et al. Explaining the polarized macrophage pool during murine allergic lung inflammation[J]. Front Immunol, 2022, 13: 1056477.
doi: 10.3389/fimmu.2022.1056477 |
[24] |
Batista-Gonzalez A, Vidal R, Criollo A, et al. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages[J]. Front Immunol, 2020, 10: 2993.
doi: 10.3389/fimmu.2019.02993 |
[25] |
Hou Y, Wei D, Zhang Z, et al. FABP5 controls macrophage alternative activation and allergic asthma by selectively programming long-chain unsaturated fatty acid metabolism[J]. Cell Rep, 2022, 41(7): 111668.
doi: 10.1016/j.celrep.2022.111668 |
[26] |
Abreu SC, Lopes-Pacheco M, da Silva AL, et al. Eicosapentaenoic acid enhances the effects of mesenchymal stromal cell therapy in experimental allergic asthma[J]. Front Immunol, 2018, 9: 1147.
doi: 10.3389/fimmu.2018.01147 pmid: 29881388 |
[27] |
Fussbroich D, Colas RA, Eickmeier O, et al. A combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA[J]. Mucosal Immunol, 2020, 13(3): 481-492.
doi: 10.1038/s41385-019-0245-2 pmid: 31907365 |
[28] |
Huang C, Du W, Ni Y, et al. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo[J]. Clin Exp Immunol, 2022, 207(1): 53-64.
doi: 10.1093/cei/uxab028 |
[29] | Bottemanne P, Paquot A, Ameraoui H, et al. 25-Hydroxycholesterol metabolism is altered by lung inflammation, and its local administration modulates lung inflammation in mice[J]. FASEB J, 2021, 35(4): e21514. |
[30] |
Miyata J, Fukunaga K, Iwamoto R, et al. Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma[J]. J Allergy Clin Immunol, 2013, 131(2): 353-360.
doi: 10.1016/j.jaci.2012.07.048 pmid: 23006546 |
[31] |
Carstensen S, Gress C, Erpenbeck VJ, et al. Prostaglandin D2 metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via the DP2 receptor[J]. Respir Res, 2021, 22(1): 262.
doi: 10.1186/s12931-021-01852-3 |
[32] |
James BN, Oyeniran C, Sturgill JL, et al. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma[J]. J Allergy Clin Immunol, 2021, 147(5): 1936-1948.
doi: 10.1016/j.jaci.2020.10.024 |
[33] | James BN, Weigel C, Green CD, et al. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice[J]. FASEB J, 2023, 37(3): e22799. |
[34] |
Bankova LG, Boyce JA. A new spin on mast cells and cysteinyl leukotrienes: Leukotriene E4 activates mast cells in vivo[J]. J Allergy Clin Immunol, 2018, 142(4): 1056-1057.
doi: S0091-6749(18)31196-5 pmid: 30165055 |
[35] |
Son SE, Koh JM, Im DS. Activation of free fatty acid receptor 4 (FFA4) ameliorates ovalbumin-induced allergic asthma by suppressing activation of dendritic and mast cells in mice[J]. Int Journal Mol Sci, 2022, 23(9): 5270.
doi: 10.3390/ijms23095270 |
[36] |
Karagiannis F, Masouleh SK, Wunderling K, et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation[J]. Immunity, 2020, 52(4): 620-634.
doi: S1074-7613(20)30116-3 pmid: 32268121 |
[37] |
Oyesola OO, Duque C, Huang LC, et al. The prostaglandin D2 receptor CRTH2 promotes IL-33-induced ILC2 accumulation in the lung[J]. J Immunol, 2020, 204(4): 1001-1011.
doi: 10.4049/jimmunol.1900745 |
[38] |
Miyata J, Yokokura Y, Moro K, et al. 12/15-lipoxygenase regulates IL-33-induced eosinophilic airway inflammation in mice[J]. Front Immunol, 2021, 12: 687192.
doi: 10.3389/fimmu.2021.687192 |
[39] |
Levan SR, Stamnes KA, Lin DL, et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance[J]. Nat Microbiol, 2019, 4(11): 1851-1861.
doi: 10.1038/s41564-019-0498-2 pmid: 31332384 |
[40] |
Gao Y, Zhao C, Wang W, et al. Prostaglandins E2 signal mediated by receptor subtype EP2 promotes IgE production in vivo and contributes to asthma development[J]. Sci Rep, 2016, 6: 20505.
doi: 10.1038/srep20505 pmid: 26852804 |
[41] | Kim N, Thatcher TH, Sime PJ, et al. Corticosteroids inhibit anti-IgE activities of specialized proresolving mediators on B cells from asthma patients[J]. JCI Insight, 2017, 2(3): e88588. |
[42] |
Ravi A, Goorsenberg AWM, Dijkhuis A, et al. Metabolic differences between bronchial epithelium from healthy individuals and patients with asthma and the effect of bronchial thermoplasty[J]. J Allergy Clin Immunol, 2021, 148(5): 1236-1248.
doi: 10.1016/j.jaci.2020.12.653 pmid: 33556463 |
[43] | Pascoe CD, Roy N, Turner-Brannen E, et al. Oxidized phosphatidylcholines induce multiple functional defects in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(4): L703-L717. |
[44] |
Pascoe CD, Jha A, Ryu MH, et al. Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction[J]. Eur Respir J, 2021, 57(2): 2000839.
doi: 10.1183/13993003.00839-2020 |
[45] |
Mochimaru T, Fukunaga K, Miyata J, et al. 12-OH-17, 18- Epoxyeicosatetraenoic acid alleviates eosinophilic airway inflammation in murine lungs[J]. Allergy, 2018, 73(2): 369-378.
doi: 10.1111/all.13297 pmid: 28857178 |
[46] | Kanti MM, Striessnig-Bina I, Wieser BI, et al. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration[J]. JCI Insight, 2022, 7(9): e149438. |
[47] | Matoba A, Matsuyama N, Shibata S, et al. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(3): L333-L348. |
[48] | Saunders R, Kaul H, Berair R, et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment[J]. Sci Transl Med, 2019, 11(479): eaao6451. |
[49] |
Blais-Lecours P, Laouafa S, Arias-Reyes C, et al. Metabolic adaptation of airway smooth muscle cells to an SPHK2 substrate precedes cytostasis[J]. Am J Respir Cell Mol Biol, 2020, 62(1): 35-42.
doi: 10.1165/rcmb.2018-0397OC |
[50] |
Liu Y, Wei L, He C, et al. Lipoxin A4 inhibits ovalbumin-induced airway inflammation and airway remodeling in a mouse model of asthma[J]. Chem Biol Interact, 2021, 349: 109660.
doi: 10.1016/j.cbi.2021.109660 |
[1] | 李丹, 张睿, 刘峰, 赵德育. 超重和肥胖与哮喘患儿肺功能的相关性研究[J]. 临床儿科杂志, 2024, 42(5): 429-433. |
[2] | 黄慈丹, 许海珠, 温英梅, 刘秀莲. 海南省少数民族地区脂肪酸氧化代谢病新生儿筛查结果分析[J]. 临床儿科杂志, 2024, 42(2): 133-138. |
[3] | 夏欣 综述, 姚志荣 审校. 脂质链长度与特应性皮炎相关性研究进展[J]. 临床儿科杂志, 2024, 42(1): 80-84. |
[4] | 王金荣, 苗瑜, 光增, 曹洛菲. 新型冠状病毒感染对哮喘儿童肺功能影响[J]. 临床儿科杂志, 2023, 41(5): 333-338. |
[5] | 邬宇芬, 董文芳, 潘春红, 张皓. 儿童阻塞性通气功能障碍判断参数的临床分析[J]. 临床儿科杂志, 2023, 41(5): 339-345. |
[6] | 杨姝晖, 刘玉琳, 杨帆, 罗征秀, 刘恩梅. 呼吸康复对支气管哮喘患儿影响的前瞻性随机对照研究[J]. 临床儿科杂志, 2023, 41(5): 345-352. |
[7] | 刘秋怡, 张沛林, 郭蓉, 闫莉, 耿刚, 刘铮, 田代印, 代继宏, 罗征秀, 符州, 牛超. 900例哮喘急性发作期住院患儿临床特征分析[J]. 临床儿科杂志, 2023, 41(5): 353-359. |
[8] | 李艳君, 张永红, 陈妍, 邱文娟, 韩连书, 朱天闻. 早发型极长链酰基辅酶A脱氢酶缺乏症3例临床及遗传学分析[J]. 临床儿科杂志, 2023, 41(5): 381-386. |
[9] | 张东俊, 邵洁. 哮喘儿童新冠期间使用生物制剂安全性及其对呼吸道病毒影响[J]. 临床儿科杂志, 2023, 41(12): 955-960. |
[10] | 谭永强, 刘海沛, 施燕蓉. 运动康复对哮喘患儿嗜酸性粒细胞炎症表达的影响[J]. 临床儿科杂志, 2022, 40(8): 586-590. |
[11] | 邹羽彤, 黄林生, 钟慧, 杨蓉, 谷丽. 不同控制水平哮喘儿童的肠道菌群分析[J]. 临床儿科杂志, 2022, 40(5): 382-387. |
[12] | 谢宜俐. 儿童哮喘与成人慢性阻塞性肺疾病相关性研究进展[J]. 临床儿科杂志, 2021, 39(6): 467-. |
[13] | 李心悦. 短链脂肪酸与食物过敏的肠道黏膜免疫[J]. 临床儿科杂志, 2021, 39(6): 471-. |
[14] | 王菲,杨男,陈宁,等. 儿童囊性纤维化并发变应性支气管肺曲霉菌病1例报告并文献复习[J]. 临床儿科杂志, 2021, 39(2): 117-. |
[15] | 黄丽珍,郝创利,蒋吴君,等. 脉冲震荡和常规肺功能检查在儿童哮喘中的相关性研究[J]. 临床儿科杂志, 2020, 38(12): 896-. |
|