临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (1): 66-72.doi: 10.12372/jcp.2023.21e1773
邱佳韵(综述), 周国平(审校)
收稿日期:
2021-12-27
出版日期:
2023-01-15
发布日期:
2023-02-16
基金资助:
Reviewer: QIU Jiayun, Reviser: ZHOU Guoping
Received:
2021-12-27
Published:
2023-01-15
Online:
2023-02-16
摘要:
川崎病(KD)是以全身性血管炎为主要特征的儿童常见疾病,其最严重的并发症即累及冠状动脉的心血管疾病,即使治疗后,也有部分儿童遗留冠状动脉瘤等后遗症。川崎病已成为儿童获得性心脏病最常见原因之一。目前KD冠状动脉损伤的机制尚不清晰。文章从免疫遗传方向综述国内外KD冠状动脉损伤机制最新研究成果与进展。
邱佳韵(综述), 周国平(审校). 川崎病冠状动脉损伤机制免疫遗传研究进展[J]. 临床儿科杂志, 2023, 41(1): 66-72.
Reviewer: QIU Jiayun, Reviser: ZHOU Guoping. Immune genetics of coronary artery injury pathogenesis in Kawasaki disease[J]. Journal of Clinical Pediatrics, 2023, 41(1): 66-72.
[1] |
Zhang Y, Wang Y, Zhang L, et al. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRbeta vascular smooth muscle cell axis[J]. Circ Res, 2020, 127(7): 855-873.
doi: 10.1161/CIRCRESAHA.120.316951 pmid: 32597702 |
[2] |
Kong WX, Ma F Y, Fu SL, et al. Biomarkers of intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease[J]. World J Pediatr, 2019, 15(2): 168-175.
doi: 10.1007/s12519-019-00234-6 |
[3] |
Kumrah R, Vignesh P, Rawat A, et al. Immunogenetics of Kawasaki disease[J]. Clin Rev Allergy Immunol, 2020, 59(1): 122-139.
doi: 10.1007/s12016-020-08783-9 |
[4] | Dusenbery SM, Newburger JW, Colan SD, et al. Myocardial fibrosis in patients with a history of Kawasaki disease[J]. Int J Cardiol Heart Vasc, 2021, 32: 100713. |
[5] |
Zeng Z, Wang Q, Yang X, et al. Qishen granule attenuates cardiac fibrosis by regulating TGF-beta /Smad3 and GSK-3beta pathway[J]. Phytomedicine, 2019, 62: 152949.
doi: 10.1016/j.phymed.2019.152949 |
[6] |
Ser OS, Cetinkal G, Kilicarslan O, et al. The comparison of serum TGF-beta levels and associated polymorphisms in patients with coronary artery ectasia and normal coronary artery[J]. Egypt Heart J, 2021, 73(1): 32.
doi: 10.1186/s43044-021-00153-w pmid: 33788038 |
[7] | Liu Y, Fu L, Pi L, et al. An angiotensinogen gene polymorphism (rs5050) is associated with the risk of coronary artery aneurysm in Southern Chinese children with Kawasaki disease[J]. Dis Markers, 2019: 2849695. |
[8] |
Kwon YC, Kim JJ, Yun SW, et al. Male-specific association of the FCGR2A His167Arg polymorphism with Kawasaki disease[J]. PLoS One, 2017, 12(9): e0184248.
doi: 10.1371/journal.pone.0184248 |
[9] |
Hoggart C, Shimizu C, Galassini R, et al. Identification of novel locus associated with coronary artery aneurysms and validation of loci for susceptibility to Kawasaki disease[J]. Eur J Hum Genet, 2021, 29(12): 1734-1744.
doi: 10.1038/s41431-021-00838-5 pmid: 33772158 |
[10] |
Paul P, Picard C, Lyonnet L, et al. FCGR2A-HH gene variants encoding the Fc gamma receptor for the C-reactive protein are associated with enhanced monocyte CD32 expression and cardiovascular events' recurrence after primary acute coronary syndrome[J]. Biomedicines, 2022, 10(2): 495.
doi: 10.3390/biomedicines10020495 |
[11] |
Calderon-Sanchez EM, Avila-Medina J, Callejo-Garcia P, et al. Role of Orai1 and L-type CaV1.2 channels in Endothelin-1 mediated coronary contraction under ischemia and reperfusion[J]. Cell Calcium, 2020, 86: 102157.
doi: 10.1016/j.ceca.2019.102157 |
[12] | 吴琪. STIM 1/Orai 1信号通路在高压负荷诱导冠状动脉血管平滑肌细胞异常增殖中的机制研究[D]. 南昌大学, 2018. |
[13] |
Ferdosian F, Dastgheib S A, Hosseini-Jangjou SH, et al. Association of TNF-alpha rs1800629, CASP3 rs72689236 and FCGR2A rs1801274 polymorphisms with susceptibility to Kawasaki disease: a comprehensive meta-analysis[J]. Fetal Pediatr Pathol, 2021, 40(4): 320-336.
doi: 10.1080/15513815.2019.1707917 |
[14] |
Ji N, Qi Z, Wang Y, et al. Pyroptosis: a new regulating mechanism in cardiovascular disease[J]. J Inflamm Res, 2021, 14: 2647-2666.
doi: 10.2147/JIR.S308177 pmid: 34188515 |
[15] |
Zhang L, Lin K, Wang Y, et al. Protective effect of TNFRSF11A rs7239667 G > C gene polymorphism on coronary outcome of Kawasaki disease in southern Chinese population[J]. Front Genet, 2021, 12: 691282.
doi: 10.3389/fgene.2021.691282 |
[16] |
Wang X, Ding YY, Chen Y, et al. MiR-223-3p alleviates vascular endothelial injury by targeting IL6ST in Kawasaki disease[J]. Front Pediatr, 2019, 7: 288.
doi: 10.3389/fped.2019.00288 pmid: 31396494 |
[17] | Dai R, Liu Y, Zhou Y, et al. Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention[J]. J Clin Lab Anal, 2020, 34(1): e23013. |
[18] | Li Y, Wu X, Gao F, et al. MiR-197-3p regulates endothelial cell proliferation and migration by targeting IGF1R and BCL2 in Kawasaki disease[J]. Int J Clin Exp Pathol, 2019, 12(11): 4181-4192. |
[19] |
Liu C, Yang D, Wang H, et al. MicroRNA-197-3p mediates damage to human coronary artery endothelial cells via targeting TIMP3 in Kawasaki disease[J]. Mol Cell Biochem, 2021, 476(12): 4245-4263.
doi: 10.1007/s11010-021-04238-7 |
[20] |
Li Z, Jiang J, Tian L, et al. A plasma mir-125a-5p as a novel biomarker for Kawasaki disease and induces apoptosis in HUVECs[J]. PLoS One, 2017, 12(5): e0175407.
doi: 10.1371/journal.pone.0175407 |
[21] |
Wu S, Sun H, Sun B. MicroRNA-145 is involved in endothelial cell dysfunction and acts as a promising biomarker of acute coronary syndrome[J]. Eur J Med Res, 2020, 25(1): 2.
doi: 10.1186/s40001-020-00403-8 pmid: 32178736 |
[22] |
Ko TM, Chang JS, Chen SP, et al. Genome-wide transcriptome analysis to further understand neutrophil activation and lncRNA transcript profiles in Kawasaki disease[J]. Sci Rep, 2019, 9(1): 328.
doi: 10.1038/s41598-018-36520-y |
[23] |
Zhang H, Ji N, Gong X, et al. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 967-974.
doi: 10.1093/abbs/gmaa087 |
[24] |
Kim YK. Analysis of circular RNAs in the Coronary arteries of patients with Kawasaki disease[J]. J Lipid Atheroscler, 2019, 8(1): 50-57.
doi: 10.12997/jla.2019.8.1.50 |
[25] |
Miao L, Yin RX, Zhang QH, et al. A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease[J]. Sci Rep, 2019, 9(1): 18314.
doi: 10.1038/s41598-019-54603-2 pmid: 31797949 |
[26] | Guo X, Liu C, Wang GB, et al. Quantitative proteomics and bioinformatics analyses of human coronary artery endothelial cell injury induced by Kawasaki disease[J]. Zhongguo Dang Dai Er Ke Za Zhi, 2020, 22(7): 796-803. |
[27] | 蒋丰智, 赵青, 曾俊峰, 等. PTX3及NT-proBNP在小儿川崎病冠脉损害中的意义[J]. 临床儿科杂志, 2019, 37: 107-110. |
[28] |
Ching L L, Nerurkar V R, Lim E, et al. Elevated levels of Pentraxin 3 correlate with neutrophilia and coronary artery dilation during acute Kawasaki disease[J]. Front Pediatr, 2020, 8: 295.
doi: 10.3389/fped.2020.00295 pmid: 32670996 |
[29] | Barbosa JE, Stockler-Pinto MB, Cruz BOD, et al. Nrf2, NF-kappa B and PPAR beta/delta mRNA expression profile in patients with coronary artery disease[J]. Arq Bras Cardiol, 2019, 113(6): 1121-1127. |
[30] |
Qian B, Huang H, Cheng M, et al. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury[J]. Eur J Med Res, 2020, 25(1): 8.
doi: 10.1186/s40001-020-00406-5 pmid: 32183905 |
[31] |
Zhang D, Liu L, Yuan Y, et al. Oxidative phosphorylation-mediated E-Selectin upregulation is associated with endothelia-monocyte adhesion in human coronary artery endothelial cells treated with sera from patients with Kawasaki disease[J]. Front Pediatr, 2021, 9: 618267.
doi: 10.3389/fped.2021.618267 |
[32] |
Wang Y, Hu J, Liu J, et al. The role of Ca(2+)/NFAT in dysfunction and inflammation of human coronary endothelial cells induced by sera from patients with Kawasaki disease[J]. Sci Rep, 2020, 10(1): 4706.
doi: 10.1038/s41598-020-61667-y |
[33] |
Xiao X, Yang C, Qu SL, et al. S100 proteins in atherosclerosis[J]. Clin Chim Acta, 2020, 502: 293-304.
doi: S0009-8981(19)32141-2 pmid: 31794767 |
[34] |
Zandstra J, van de Geer A, Tanck MWT, et al. Biomarkers for the discrimination of acute Kawasaki disease from infections in childhood[J]. Front Pediatr, 2020, 8: 355.
doi: 10.3389/fped.2020.00355 pmid: 32775314 |
[35] |
Armaroli G, Verweyen E, Pretzer C, et al. Monocyte-derived interleukin-1beta as the driver of S100A12-induced sterile inflammatory activation of human coronary artery endothelial cells: implications for the pathogenesis of Kawasaki disease[J]. Arthritis Rheumatol, 2019, 71(5): 792-804.
doi: 10.1002/art.40784 |
[36] |
Nakashima Y, Sakai Y, Mizuno Y, et al. Lipidomics links oxidized phosphatidylcholines and coronary arteritis in Kawasaki disease[J]. Cardiovasc Res, 2021, 117(1): 96-108.
doi: 10.1093/cvr/cvz305 pmid: 31782770 |
[37] |
He YE, Qiu HX, Wu RZ, et al. Oxidised low-density lipoprotein and its receptor-mediated endothelial dysfunction are associated with coronary artery lesions in Kawasaki disease[J]. J Cardiovasc Transl Res, 2020, 13(2): 204-214.
doi: 10.1007/s12265-019-09908-y |
[38] | Wei S, Liu Q. Long noncoding RNA MALAT1 modulates sepsis-induced cardiac inflammation through the miR-150-5p/NF-kappaB axis[J]. Int J Clin Exp Pathol, 2019, 12(9): 3311-3319. |
[39] |
Chang SF, Liu SF, Chen CN, et al. Serum IP-10 and IL-17 from Kawasaki disease patients induce calcification-related genes and proteins in human coronary artery smooth muscle cells in vitro[J]. Cell Biosci, 2020, 10: 36.
doi: 10.1186/s13578-020-00400-8 |
[40] |
Chen X, Wang R, Chen W, et al. Decoy receptor-3 regulates inflammation and apoptosis via PI3K/AKT signaling pathway in coronary heart disease[J]. Exp Ther Med, 2019, 17(4): 2614-2622.
doi: 10.3892/etm.2019.7222 pmid: 30906453 |
[41] |
Wu J, Liu C, Zhang L, et al. Histone deacetylase-2 is involved in stress-induced cognitive impairment via histone deacetylation and PI3K/AKT signaling pathway modification[J]. Mol Med Rep, 2017, 16(2): 1846-1854.
doi: 10.3892/mmr.2017.6840 pmid: 28656275 |
[42] |
Hua L, Zhou Y, Hou C, et al. Shexiang baoxin pills inhibited proliferation and migration of human coronary artery smooth muscle cells via PI3K/AKT/mTOR pathway[J]. Front Cardiovasc Med, 2021, 8: 700630.
doi: 10.3389/fcvm.2021.700630 |
[43] |
Li X, Sun S, Chen D, et al. Puerarin attenuates the endothelial-mesenchymal transition induced by oxidative stress in human coronary artery endothelial cells through PI3K/AKT pathway[J]. Eur J Pharmacol, 2020, 886: 173472.
doi: 10.1016/j.ejphar.2020.173472 |
[44] |
Shi X, Guan Y, Jiang S, et al. Renin-angiotensin system inhibitor attenuates oxidative stress induced human coronary artery endothelial cell dysfunction via the PI3K/AKT/mTOR pathway[J]. Arch Med Sci, 2019, 15(1): 152-164.
doi: 10.5114/aoms.2018.74026 pmid: 30697266 |
[45] |
Zhang J, Zhuge Y, Rong X, et al. Protective roles of Xijiao Dihuang Tang on Coronary artery injury in Kawasaki disease[J]. Cardiovasc Drugs Ther, 2021, doi:10.1007/s10557-021-07277-w.
doi: 10.1007/s10557-021-07277-w |
[1] | 罗明静, 余嘉明, 王晓东, 张小玲, 余阅, 张瑜, 文飞球, 刘四喜. 424例地中海贫血患儿异基因造血干细胞移植后继发侵袭性真菌病临床分析[J]. 临床儿科杂志, 2025, 43(1): 21-28. |
[2] | 刘冬霞, 金蓉, 林荣军. 儿童重症难治性肺炎支原体肺炎并发闭塞性支气管炎危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 29-34. |
[3] | 陈豪, 李肖, 李林, 关静, 董燕, 张晓莉, 杜开先. CHD1基因变异导致发育落后1例患儿的临床特征及遗传学分析[J]. 临床儿科杂志, 2025, 43(1): 45-49. |
[4] | 钟瑾虹, 王灿, 陈芳. 婴幼儿纤维支气管镜诊疗中镇静技术的研究进展[J]. 临床儿科杂志, 2025, 43(1): 50-55. |
[5] | 蒋卫芹, 王静, 程安娜, 陈婷婷, 黄玉娟. 儿童热性惊厥急性期惊厥复发的危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 8-13. |
[6] | 邱琇, 韦冬梅, 林珊珊, 夏慧敏, 周文浩. 广州出生队列研究的理念与实践[J]. 临床儿科杂志, 2024, 42(9): 747-752. |
[7] | 陈倩, 田英, 孙锟, 张军. 关注环境、立足疾病的大型出生队列研究平台[J]. 临床儿科杂志, 2024, 42(9): 753-757. |
[8] | 范建霞. 健康生命轨迹计划缘起与发展:社区-家庭-母婴多层面儿童超重与肥胖干预研究队列[J]. 临床儿科杂志, 2024, 42(9): 768-773. |
[9] | 刘庆瑜, 王立伟, 林义临, 肖睿, 周慧, 张晓倩, 付梦冉, 米弘瑛. 新生儿高胆红素血症基因变异分析:一项单中心回顾性研究[J]. 临床儿科杂志, 2024, 42(9): 782-786. |
[10] | 姜涛, 李双杰, 唐莲, 欧阳文献. 慢性乙型肝炎患儿外周血MAIT细胞的免疫生物学特性[J]. 临床儿科杂志, 2024, 42(9): 787-790. |
[11] | 裴皓月, 龚一鸣, 韩心如, 白美荣, 褚迅, 周莹. KIF12基因新复合杂合突变导致进行性家族性肝内胆汁淤积1例报告[J]. 临床儿科杂志, 2024, 42(9): 791-797. |
[12] | 周洁, 刘克强, 王金玲, 王莹. MYH11延长突变导致巨膀胱-小结肠-肠蠕动不良综合征1例报告及文献复习[J]. 临床儿科杂志, 2024, 42(9): 798-804. |
[13] | 孙殿荣, 王岩艳, 李加山, 张雷红, 候梅. FOXG1相关综合征3例患儿临床及基因检测结果分析[J]. 临床儿科杂志, 2024, 42(9): 805-810. |
[14] | 褚思嘉, 汤继宏. 儿童急性淋巴细胞白血病及其治疗所伴发的中枢神经系统损伤研究进展[J]. 临床儿科杂志, 2024, 42(9): 811-816. |
[15] | 丁亚平, 夏姗姗, 张晨美. 《2023年国际儿童肾脏营养工作组临床实践建议:儿童急性肾损伤的营养管理》解读[J]. 临床儿科杂志, 2024, 42(8): 667-672. |
|