| [1] |
何娜, 苏珊, 叶志康, 等. 万古霉素治疗药物监测循证指南:中国药理学会治疗药物监测研究专业委员会2020年更新版[J]. 临床感染病杂志, 2020, 71(增刊4): S363-S371.
|
|
He N, Su S, Ye ZK, et al. Evidence-based guideline for therapeutic drug monitoring of vancomycin: 2020 update by the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society[J]. Linchuang Ganranbing Zazhi, 2020, 71(Suppl 4): S363-S371.
|
| [2] |
Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant staphy- lococcus aureus infections: a revised consensus guideline and review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists[J]. Clin Infect Dis, 2020, 77(11): 835-864.
|
| [3] |
Darwich AS, Polasek TM, Aronson JK, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory[J]. Annu Rev Pharmacol Toxicol, 2021, 61: 225-245.
doi: 10.1146/annurev-pharmtox-033020-113257
pmid: 33035445
|
| [4] |
焦正, 李新刚, 尚德为, 等. 模型引导的精准用药:中国专家共识(2021版)[J]. 中国临床药理学与治疗学, 2021, 26(11): 1215-1228.
|
|
Jiao Z, Li XG, Shang DW, et al. Model-informed precision dosing: Chinese expert consensus (2021 edition)[J]. Zhongguo Linchuang Yaolixue Yu Zhiliaoxue, 2021, 26(11): 1215-1228.
|
| [5] |
Kantasiripitak W, Van R, Gijsen M, et al. Software tools for model-informed precision dosing: how well do they satisfy the needs?[J]. Front Pharmacol, 2020, 11: 620.
doi: 10.3389/fphar.2020.00620
pmid: 32457619
|
| [6] |
刘雨安, 杨小文, 李乐之. 机器学习在疾病预测的应用研究进展[J]. 护理学报, 2021, 28(7): 30-34.
doi: 10.16460/j.issn1008-9969.2021.07.030
|
|
Liu YA, Yang XW, Li LZ. Research progress on the application of machine learning in disease prediction[J]. Huli Xuebao, 2021, 28(7): 30-34.
|
| [7] |
Anderson BJ, Holford NHG. Tips and traps analyzing pediatric PK data[J]. Paediatr Anaesth, 2011, 21: 222-237.
doi: 10.1111/j.1460-9592.2011.03536.x
pmid: 21320233
|
| [8] |
Gonzalez D, Rao GG, Bailey SC, et al. Precision dosing: public health need, proposed framework, and anticipated impact[J]. Clin Transl Sci, 2017, 10(6): 443-454.
doi: 10.1111/cts.12490
pmid: 28875519
|
| [9] |
Hughes DM, Goswami S, Keizer RJ, et al. Bayesian clinical decision support-guided versus clinician-guided vancomycin dosing in paediatric patients[J]. J Antimicrob Chemother, 2020, 75: 434-437.
doi: 10.1093/jac/dkz444
pmid: 31670812
|
| [10] |
Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations[J]. J Pediatr Pharmacol Ther, 2014, 19: 262-276.
doi: 10.5863/1551-6776-19.4.262
pmid: 25762871
|
| [11] |
Khaled A, Xian P, Amita P, et al. Preterm physiologically based pharmacokinetic model. Part II: Applications of the model to predict drug pharmacokinetics in the preterm population[J]. Clin Pharmacokinet, 2019, 59(4): 501-518.
doi: 10.1007/s40262-019-00827-4
|
| [12] |
Roggeveen LF, Guo T, Driessen RH, et al. Right dose, right now: development of autokinetics for real time model informed precision antibiotic dosing decision support at the bedside of critically ill patients[J]. Front Pharmacol, 2020, 11: 646.
doi: 10.3389/fphar.2020.00646
pmid: 32499697
|
| [13] |
Chung E, Sen J, Patel P, et al. Population pharmacokinetic models of vancomycin in paediatric patients: a systematic review[J]. Clin Pharmacokinet, 2021, 60(9): 985-1001.
doi: 10.1007/s40262-021-01027-9
|
| [14] |
Aljutayli A, ElHaffaf I, Marsot A, et al. An update on population pharmacokinetic analyses of vancomycin, part II: in pediatric patients[J]. Clin Pharmacokinet, 2022, 61(1): 47-70.
doi: 10.1007/s40262-021-01050-w
|
| [15] |
Chen J, Huang X, Yu L, et al. Vancomycin population pharmacokinetics analysis in Chinese paediatric patients with varying degrees of renal function and ages: development of new practical dosing recommendations[J]. J Antimicrob Chemother, 2023, 78(8): 2037-2051.
doi: 10.1093/jac/dkad202
|
| [16] |
Albanell M, Rodríguez M, Bastida C, et al. A review of vancomycin, gentamicin, and amikacin population pharmacokinetic models in neonates and infants[J]. Clin Pharmacokinet, 2025, 64(1): 1-25.
doi: 10.1007/s40262-024-01459-z
pmid: 39821208
|
| [17] |
Allegaert K, Flint R, Smits A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle[J]. Expert Opin Drug Metab Toxicol, 2019, 13(12): 1141-1153.
|
| [18] |
Frymoyer A, Stockmann C, Hersh AL, et al. Individualized empiric vancomycin dosing in neonates using a model-based approach[J]. J Pediatr Infect Dis Soc, 2018, 8: 97-104.
doi: 10.1093/jpids/pix109
|
| [19] |
Kalamees R, Soeorg H, Ilmoja ML, et al. Prospective validation of a model-informed precision dosing tool for vancomycin treatment in neonates[J]. Antimicrob Agents Chemother, 2024, 68(1): e01591-23.
|
| [20] |
Schwenk HT, Frymoyer A, Brockmeyer JM, et al. Impact of model-informed precision dosing on achievement of vancomycin exposure targets in pediatric patients with cystic fibrosis[J]. Pharmacotherapy, 2023, 43(10): 1007-1014.
doi: 10.1002/phar.v43.10
|
| [21] |
Leroux S, Jacqz E, Biran V, et al. Clinical utility and safety of a model-based patient-tailored dose of vancomycin in neonates[J]. Antimicrob Agents Chemother, 2016, 60: 2039-2042.
doi: 10.1128/AAC.02214-15
pmid: 26787690
|
| [22] |
Hughes DM, Goswami S, Keizer RJ, et al. Bayesian clinical decision support-guided versus clinician-guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population[J]. J Antimicrob Chemother, 2020, 75: 434-437.
doi: 10.1093/jac/dkz444
pmid: 31670812
|
| [23] |
王俊, 刘茂昌, 李思辉, 等. 模型引导的儿童万古霉素个体化用药程序的编制及临床应用[J]. 中国药学杂志, 2024, 59(14): 1347-1352.
doi: 10.11669/cpj.2024.14.011
|
|
Wang J, Liu MC, Li SH, et al. Development and clinical application of a model-informed individualized dosing program for vancomycin in children[J]. Zhongguo Yaoxue Zazhi, 2024, 59(14): 1347-1352.
|
| [24] |
Chai MG, Tu Q, Cotta MO, et al. Achievement of therapeutic antibiotic exposures using Bayesian dosing software in critically unwell children and adults with sepsis[J]. Intensive Care Med, 2024, 50(4): 539-547.
doi: 10.1007/s00134-024-07353-3
|
| [25] |
Abouelkheir M, Almohaizeie A, Almutairi A, et al. Evaluation of vancomycin individualized model-based dosing approach in neonates[J]. Pediatr Neonatol, 2023, 64(4): 327-334.
doi: 10.1016/j.pedneo.2022.10.006
|
| [26] |
Frymoyer A, Guglielmo BJ, Hersh AL, et al. Desired vancomycin trough serum concentration for treating invasive methicillin-resistant staphylococcal infections[J]. Pediatr Infect Dis J, 2013, 32: 1077-1079.
doi: 10.1097/INF.0b013e318299f75c
pmid: 23652479
|
| [27] |
Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline[J]. Kidney Int Suppl, 2013, 3: 1-150.
doi: 10.1038/ki.1973.1
|
| [28] |
Zhao W, Lopez E, Biran V, et al. Vancomycin continuous infusion in neonates: Dosing optimisation and therapeutic drug monitoring[J]. Arch Dis Child, 2013, 98: 449-453.
doi: 10.1136/archdischild-2012-302765
pmid: 23254142
|
| [29] |
Gijsen M, Vlasselaers D, Spriet I, et al. Pharmacokinetics of antibiotics in pediatric intensive care: fostering variability to attain precision medicine[J]. Antibiotics, 2021, 10(10): 1182.
doi: 10.3390/antibiotics10101182
|
| [30] |
Kong D, Colin PJ, Eleveld DJ, et al. A pooled pharmaco- kinetic analysis for piperacillin/tazobactam across different patient populations: from premature infants to the elderly[J]. Clin Pharmacokinetics, 2024, 63(12): 1235-1252.
|
| [31] |
Ngougni P, Vanneste D, Schouwenburg S, et al. Dose optimization of β-lactam antibiotics in children: from population pharmacokinetics to individualized therapy[J]. Ther Drug Monit, 2024, 44(3): 215-232.
doi: 10.1097/FTD.0000000000000928
|
| [32] |
Dibbets AC, Koldeweiij C, Osinga EP, et al. Barriers and facilitators for bringing model informed precision dosing to the patient’s bedside: a systematic review[J]. Clin Pharmacol Ther, 2025, 117(3): 633645.
|