临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (4): 316-320.doi: 10.12372/jcp.2023.22e0286
• 继续医学教育 • 上一篇
收稿日期:
2022-03-07
出版日期:
2023-04-15
发布日期:
2023-04-07
通讯作者:
王丽杰
E-mail:wlj682002@163.com
Received:
2022-03-07
Online:
2023-04-15
Published:
2023-04-07
Contact:
WANG Lijie
E-mail:wlj682002@163.com
摘要:
在失液、感染和免疫性疾病等多种因素作用下,由于自主调节能力相对弱,肾脏组织极易发生缺氧缺血,造成急性肾损伤(AKI)。AKI发生率高,严重影响危重患儿预后,但其缺乏适用于临床的早期诊断指标。近年来应用近红外光谱技术(NIRS)监测肾脏血氧饱和度(RrSO2),可反映肾脏的血流灌注,间接反映肾脏功能。文章基于国内外对RrSO2的研究进展,整理了NIRS在肾脏方面的临床应用,提出RrSO2可作为AKI临床诊断的有力 指标。
张津铭, 王丽杰. 肾脏血氧饱和度对急性肾损伤诊断意义研究进展[J]. 临床儿科杂志, 2023, 41(4): 316-320.
ZHANG Jinming, WANG Lijie. Research progress of renal oxygen saturation in the diagnosis of acute kidney injury ZHANG Jinming, WANG Lijie[J]. Journal of Clinical Pediatrics, 2023, 41(4): 316-320.
[1] | 周国平. 急性肾损伤的诊断与治疗进展[J]. 中华实用儿科临床杂志, 2013, 28(9): 717-720. |
[2] |
Abbasciano RG, Hoxha S, Gaburro D, et al. Impact on renal function and hospital outcomes of an individualized management of cardiopulmonary bypass in congenital heart surgery: a pilot study[J]. Pediatr Cardiol, 2021, 42(8): 1862-1870.
doi: 10.1007/s00246-021-02680-4 pmid: 34296332 |
[3] |
Komaru Y, Inokuchi R, Iwagami M, et al. Correlation between the incidence and attributable mortality fraction of acute kidney injury: a systematic review[J]. Blood Purif, 2020, 49(4): 386-393.
doi: 10.1159/000505568 |
[4] |
Liberio BM, Brinton JT, Gist KM, et al. Risk factors for acute kidney injury in neonates with congenital diaphragmatic hernia[J]. J Perinatol, 2021, 41(8): 1901-1909.
doi: 10.1038/s41372-021-01119-1 pmid: 34120147 |
[5] |
Parikh AC, Tullu MS. A study of acute kidney injury in a tertiary care pediatric intensive care unit[J]. J Pediatr Intensive Care, 2021, 10(4): 264-270.
doi: 10.1055/s-0040-1716577 pmid: 34745699 |
[6] |
Niaz T, Stephens EH, Gleich SJ, et al. Acute kidney injury and renal replacement therapy after fontan operation[J]. Am J Cardiol, 2021, 161: 84-94.
doi: 10.1016/j.amjcard.2021.08.056 pmid: 34794622 |
[7] |
Zhang Y, Xiang B, Wu Y, et al. Risk factors and associated outcomes of early acute kidney injury in pediatric liver transplant recipients: a retrospective study[J]. J Pediatr Surg, 2020, 55(3): 446-450.
doi: S0022-3468(19)30507-X pmid: 31466815 |
[8] | 张婷, 李晓文. 影响新生儿急性肾损伤预后的危险因素分析[J]. 临床儿科杂志, 2021, 39(9): 646-649. |
[9] |
Van den Eynde J, Rotbi H, Gewillig M, et al. In-hospital outcomes of acute kidney injury after pediatric cardiac surgery: a meta-analysis[J]. Front Pediatr, 2021, 9: 733744.
doi: 10.3389/fped.2021.733744 |
[10] |
McCormick M, Richardson T, Warady BA, et al. Acute kidney injury in paediatric patients with sickle cell disease is associated with increased morbidity and resource utilization[J]. Br J Haematol, 2020, 189(3): 559-565.
doi: 10.1111/bjh.v189.3 |
[11] |
Bjornstad EC, Muronya W, Smith ZH, et al. Incidence and epidemiology of acute kidney injury in a pediatric Malawian trauma cohort: a prospective observational study[J]. BMC Nephrol, 2020, 21(1): 98.
doi: 10.1186/s12882-020-01755-3 pmid: 32169046 |
[12] |
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204-R212.
doi: 10.1186/cc2872 |
[13] |
Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury[J]. Am J Kidney Dis, 2013, 61(5): 649-672.
doi: 10.1053/j.ajkd.2013.02.349 pmid: 23499048 |
[14] | 王丽杰, 刘春峰. 超声导向的儿童急性肾损伤治疗[J]. 中国小儿急救医学, 2021, 28(4): 264-268. |
[15] | 闫文娟, 张炯. 急性肾损伤的研究进展[J]. 临床与病理杂志, 2019, 39(7): 1571-1575. |
[16] | Fuhrman DY, Kellum JA, Joyce EL, et al. The use of urinary biomarkers to predict acute kidney injury in children after liver transplant[J]. Pediatr Transplant, 2020, 24(1): e13608. |
[17] | 李青, 张琦, 王晓宇, 等. 先天性心脏病患儿术后急性肾损伤的影响因素及尿NGAL、KIM-1的诊断价值分析[J]. 现代生物医学进展, 2021, 21(18): 3515-3519. |
[18] |
Vijay P, Lal BB, Sood V, et al. Cystatin C: best biomarker for acute kidney injury and estimation of glomerular filtration rate in childhood cirrhosis[J]. Eur J Pediatr, 2021, 180(11): 3287-3295.
doi: 10.1007/s00431-021-04076-1 pmid: 33978827 |
[19] |
Yoneyama F, Okamura T, Takigiku K, et al. Novel urinary biomarkers for acute kidney injury and prediction of clinical outcomes after pediatric cardiac surgery[J]. Pediatr Cardiol, 2020, 41(4): 695-702.
doi: 10.1007/s00246-019-02280-3 pmid: 31872282 |
[20] | 汪守平, 邓丽静. 小儿心脏术后急性肾损伤的诊断和治疗[J]. 四川医学, 2021, 42(2): 205-208. |
[21] | Shankar V, Raj A, Singhal S, et al. Doppler-derived renal resistive index helps predict acute kidney injury in patients undergoing living-related liver transplantation[J]. Clin Transplant, 2021, 35(5): e14263. |
[22] |
Neunhoeffer F, Wiest M, Sandner K, et al. Non-invasive measurement of renal perfusion and oxygen metabolism to predict postoperative acute kidney injury in neonates and infants after cardiopulmonary bypass surgery[J]. Br J Anaesth, 2016, 117(5): 623-634.
pmid: 27799177 |
[23] | EL-Sadek AE, El-Gamasy MA, Behiry EG, et al. Plasma cystatin C versus renal resistive index as early predictors of acute kidney injury in critically ill neonates[J]. J Pediatr Urol, 2020, 16(2): 206. |
[24] |
Chakravarti SB, Mittnacht AJ, Katz JC, et al. Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2009, 23(5): 663-667.
doi: 10.1053/j.jvca.2009.03.014 pmid: 19447648 |
[25] |
Joffe R, Al Aklabi M, Bhattacharya S, et al. Cardiac surgery-associated kidney injury in children and renal oximetry[J]. Pediatr Crit Care Med, 2018, 19(9): 839-845.
doi: 10.1097/PCC.0000000000001656 |
[26] |
Zhang D, Ouyang C, Zhao X, et al. Renal tissue desaturation and acute kidney injury in infant cardiac surgery: a prospective propensity score-matched cohort study[J]. Br J Anaesth, 2021, 127(4): 620-628.
doi: 10.1016/j.bja.2021.06.045 |
[27] |
Lau PE, Cruz S, Garcia-Prats J, et al. Use of renal near-infrared spectroscopy measurements in congenital diaphragmatic hernia patients on ECMO[J]. J Pediatr Surg, 2017, 52(5): 689-692.
doi: S0022-3468(17)30047-7 pmid: 28190559 |
[28] |
Ortega-Loubon C, Fernández-Molina M, Fierro I, et al. Postoperative kidney oxygen saturation as a novel marker for acute kidney injury after adult cardiac surgery[J]. J Thorac Cardiovasc Surg, 2019, 157(6): 2340-2351.
doi: S0022-5223(18)32785-5 pmid: 30459107 |
[29] | 魏碧玉, 高明龙, 吴庭楣, 等. 肾区域组织氧饱和度预测紫绀型患儿心脏手术后急性肾损伤的效果[J]. 临床麻醉学杂志, 2020, 36(1): 8-12. |
[30] |
Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267.
doi: 10.1126/science.929199 pmid: 929199 |
[31] |
Giannini I, Ferrari M, Carpi A, et al. Rat brain monitoring by near-infrared spectroscopy: an assessment of possible clinical significance[J]. Physiol Chem Phys, 1982, 14(3): 295-305.
pmid: 7185063 |
[32] |
Vaughan DL, Wickramasinghe YA, Russell GI, et al. Is allopurinol beneficial in the prevention of renal ischaemia-reperfusion injury in the rat?: evaluation by near-infrared spectroscopy[J]. Clin Sci (Lond), 1995, 88(3): 359-364.
doi: 10.1042/cs0880359 |
[33] |
Solevåg AL, Schmölzer GM, Nakstad B, et al. Association between brain and kidney near-infrared spectroscopy and early postresuscitation mortality in asphyxiated newborn piglets[J]. Neonatology, 2017, 112(1): 80-86.
doi: 10.1159/000458515 pmid: 28380491 |
[34] |
Al-Subu AM, Hacker TA, Eickhoff JC, et al. Two-site regional oxygen saturation and capnography monitoring during resuscitation after cardiac arrest in a swine pediatric ventricular fibrillatory arrest model[J]. J Clin Monit Comput, 2020, 34(1): 63-70.
doi: 10.1007/s10877-019-00291-2 pmid: 30820870 |
[35] | 刘珊珊, 李恩有. 脑氧饱和度监测在老年患者中的应用进展[J]. 中华临床医师杂志(电子版), 2013, 7(24): 11798-11800. |
[36] |
Gumulak R, Lucanova LC, Zibolen M. Use of near-infrared spectroscopy (NIRS) in cerebral tissue oxygenation monitoring in neonates[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2017, 161(2): 128-133.
doi: 10.5507/bp.2017.012 pmid: 28360433 |
[37] | 谢越涛, 邢大军, 姚翠翠, 等. 肾氧饱和度监测在婴幼儿非紫绀型先心病手术中的应用及临床意义[J]. 中国医药导报, 2018, 15(18): 154-157. |
[38] |
Loomba RS, Rausa J, Sheikholeslami D, et al. Correlation of near-infrared spectroscopy oximetry and corresponding venous oxygen saturations in children with congenital heart disease[J]. Pediatr Cardiol, 2022, 43(1): 197-206.
doi: 10.1007/s00246-021-02718-7 |
[39] |
Biedrzycka A, Lango R. Tissue oximetry in anaesthesia and intensive care[J]. Anaesthesiol Intensive Ther, 2016, 48(1): 41-48.
doi: 10.5603/AIT.2016.0005 pmid: 26966109 |
[40] |
Bailey SM, Mally PV. Review of splanchnic oximetry in clinical medicine[J]. J Biomed Opt, 2016, 21(9): 091306.
doi: 10.1117/1.JBO.21.9.091306 |
[1] | 许景林, 杨汉松, 陈新华, 陈江滨, 李晓庆, 张伟峰, 陈冬梅. 连续性血液净化治疗新生儿脓毒性休克伴急性肾损伤临床分析[J]. 临床儿科杂志, 2023, 41(6): 436-441. |
[2] | 杨保旺, 洪小杨, 封志纯. 儿童体外膜氧合联合肾脏替代治疗研究进展[J]. 临床儿科杂志, 2022, 40(9): 710-714. |
[3] | 聂应明,刘 婧,戚 畅,等. 儿童异基因造血干细胞移植后急性肾损伤临床分析[J]. 临床儿科杂志, 2022, 40(1): 21-. |
[4] | 张婷, 李晓文. 影响新生儿急性肾损伤预后的危险因素分析[J]. 临床儿科杂志, 2021, 39(9): 646-. |
[5] | 何旭,夏正坤. 合并使用咪唑立宾及贝那普利诱发高尿酸血症伴急性肾损伤1例报告并文献复习[J]. 临床儿科杂志, 2021, 39(2): 99-. |
[6] | 黄慧,戴小妹,王三凤,等. 亚临床急性肾损伤与危重新生儿预后的相关性分析[J]. 临床儿科杂志, 2021, 39(12): 881-. |
[7] | 颜崇兵,马俐,张潇月,等. 新生儿重度窒息后急性肾损伤尿细胞周期停滞标志物的临床研究[J]. 临床儿科杂志, 2021, 39(12): 886-. |
[8] | 张海洋,罗黎力,李德渊,等. 川崎休克综合征致急性肾损伤1例报告[J]. 临床儿科杂志, 2021, 39(10): 736-. |
[9] | 戴小妹,陈娇,陆春久,等. 尿IGFBP-7 对危重症患儿急性肾损伤的早期预测价值[J]. 临床儿科杂志, 2019, 37(4): 277-. |
[10] | 陈子衿, 阳海平, 张高福, 王墨, 李秋, 徐珍娥 . 极低出生体质量儿急性肾损伤的危险因素及结局分析[J]. 临床儿科杂志, 2018, 36(6): 406-. |
[11] | 张建江, 应道静, 窦文杰, 史佩佩, 田喜艳, 贾莉敏, 张花婷 . 尿白介素 18 对儿童急性肾损伤诊断价值的 meta 分析[J]. 临床儿科杂志, 2018, 36(12): 944-. |
[12] | 王三凤, 陈娇, 陆春久, 李晓忠, 李艳红. 重症患儿容量超负荷与急性肾损伤及预后的关系[J]. 临床儿科杂志, 2017, 35(7): 508-. |
[13] | 张辉,易著文,肖政辉,卢秀兰. 脓毒症急性肾损伤相关指标间的关系[J]. 临床儿科杂志, 2015, 33(12): 1021-. |
[14] | 沈云琳,黄文彦. 肾小管重塑在急性肾损伤中的作用机制[J]. 临床儿科杂志, 2014, 32(9): 895-. |
[15] | 钟发展,高岩,邓会英,廖欣. 尿中性粒细胞明胶酶相关脂质运载蛋白和肾损伤分子-1预测危重患儿急性肾损伤[J]. 临床儿科杂志, 2014, 32(8): 740-. |
|